scholarly journals Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0

2021 ◽  
Vol 14 (3) ◽  
pp. 1821-1839
Author(s):  
Dana L. McGuffin ◽  
Yuanlong Huang ◽  
Richard C. Flagan ◽  
Tuukka Petäjä ◽  
B. Erik Ydstie ◽  
...  

Abstract. Atmospheric aerosol microphysical processes are a significant source of uncertainty in predicting climate change. Specifically, aerosol nucleation, emissions, and growth rates, which are simulated in chemical transport models to predict the particle size distribution, are not understood well. However, long-term size distribution measurements made at several ground-based sites across Europe implicitly contain information about the processes that created those size distributions. This work aims to extract that information by developing and applying an inverse technique to constrain aerosol emissions as well as nucleation and growth rates based on hourly size distribution measurements. We developed an inverse method based upon process control theory into an online estimation technique to scale aerosol nucleation, emissions, and growth so that the model–measurement bias in three measured aerosol properties exponentially decays. The properties, which are calculated from the measured and predicted size distributions, used to constrain aerosol nucleation, emission, and growth rates are the number of particles with a diameter between 3 and 6 nm, the number with a diameter greater than 10 nm, and the total dry volume of aerosol (N3–6, N10, Vdry), respectively. In this paper, we focus on developing and applying the estimation methodology in a zero-dimensional “box” model as a proof of concept before applying it to a three-dimensional simulation in subsequent work. The methodology is first tested on a dataset of synthetic and perfect measurements that span diverse environments in which the true particle emissions, growth, and nucleation rates are known. The inverse technique accurately estimates the aerosol microphysical process rates with an average and maximum error of 2 % and 13 %, respectively. Next, we investigate the effect that measurement noise has on the estimated rates. The method is robust to typical instrument noise in the aerosol properties as there is a negligible increase in the bias of the estimated process rates. Finally, the methodology is applied to long-term datasets of in situ size distribution measurements in western Europe from May 2006 through June 2007. At Melpitz, Germany, and Hyytiälä, Finland, the average diurnal profiles of estimated 3 nm particle formation rates are reasonable, having peaks near noon local time with average peak values of 1 and 0.15 cm−3 s−1, respectively. The normalized absolute error in estimated N3–6, N10, and Vdry at three European measurement sites is less than 15 %, showing that the estimation framework developed here has potential to decrease model–measurement bias while constraining uncertain aerosol microphysical processes.

2020 ◽  
Author(s):  
Dana L. McGuffin ◽  
Yuanlong Huang ◽  
Richard C. Flagan ◽  
Tuukka Petäjä ◽  
B. Erik Ydstie ◽  
...  

Abstract. Atmospheric aerosol microphysical processes are a significant source of uncertainty in predicting climate change. Specifically, aerosol nucleation, emissions, and growth rates, which are simulated in chemical transport models to predict the particle size distribution, are not understood well. However, long-term size distribution measurements made at several ground-based sites across Europe implicitly contain information about the processes that created those size distributions. This work aims to extract that information by developing and applying an inverse technique to constrain aerosol emissions as well as nucleation and growth rates based on hourly size distribution measurements. We developed an inverse method based upon process control theory into an online estimation technique to scale aerosol emissions, growth, and nucleation so that the model-measurement bias in three measured aerosol properties exponentially decays. The properties, which are calculated from the measured and predicted size distributions, used to constrain aerosol nucleation, emission, and growth rates are the number of particles with diameter between 3 nm and 6 nm, the number with diameter greater than 10 nm, and the total dry volume of aerosol (N3-6, N10, Vdry), respectively. In this paper, we focus on developing and applying the estimation methodology in a zero-dimensional "box" model as a proof-of-concept before applying it to a three-dimensional simulation in subsequent work. The methodology is first tested on a dataset of synthetic and perfect measurements that span diverse environments in which the true particle emissions, growth, and nucleation rates are known. The inverse technique accurately estimates the aerosol microphysical process rates with an average and maximum error of 2 % and 13 %, respectively. Next, we investigate the effect that measurement noise has on the estimated rates. The method is robust to typical instrument noise in the aerosol properties as there is a negligible increase in bias of the estimated process rates. Finally, the methodology is applied to long-term datasets of in-situ size distribution measurements in Western Europe from May 2006 through June 2007. At Melpitz, Germany and Hyytiälä, Finland, the average diurnal profiles of estimated 3 nm particle formation rates are reasonable, having peaks near noon local time with average peak values of 1 and 0.15 cm−3 s−1, respectively. The normalized absolute error in estimated N3-6, N10, and Vdry at three European measurement sites is less than 15 %, showing that the estimation framework developed here has potential to decrease model-measurement bias while constraining uncertain aerosol microphysical processes.


1991 ◽  
Vol 113 (4) ◽  
pp. 402-411 ◽  
Author(s):  
T. J. Labus ◽  
K. F. Neusen ◽  
D. G. Alberts ◽  
T. J. Gores

A basic investigation of the factors which influence the abrasive jet mixing process was conducted. Particle size analysis was performed on abrasive samples for the “as-received” condition, at the exit of the mixing tube, and after cutting a target material. Grit size distributions were obtained through sieve analysis for both water and air collectors. Two different mixing chamber geometries were evaluated, as well as the effects of pressure, abrasive feed rate, cutting speed, and target material properties on particle size distributions. An analysis of the particle size distribution shows that the main particle breakdown is from 180 microns directly to 63 microns or less, for a nominal 80 grit garnet. This selective breakdown occurs during the cutting process, but not during the mixing process.


2005 ◽  
Vol 62 (12) ◽  
pp. 4206-4221 ◽  
Author(s):  
Wanda Szyrmer ◽  
Stéphane Laroche ◽  
Isztar Zawadzki

Abstract The authors address the problem of optimization of the microphysical information extracted from a simulation system composed of high-resolution numerical models and multiparameter radar data or other available measurements. As a tool in the exploration of this question, a bulk microphysical scheme based on the general approach of scaling normalization of particle size distribution (PSD) is proposed. This approach does not rely on a particular functional form imposed on the PSD and naturally leads to power-law relationships between the PSD moments providing an accurate and compact PSD representation. To take into account the possible evolution of the shape/curvature of the distribution, ignored within standard one- and two-moment microphysical schemes, a new three-moment scheme based on the two-moment scaling normalization is proposed. The methodology of the moment retrieval included in the three-moment scheme can also be useful as a retrieval algorithm combining different remote sensing observations. The developed bulk microphysical scheme presents a unified formulation for microphysical parameterization using one, two, or three independent moments, suitable in the context of data assimilation. The effectiveness of the scheme with different combinations of independent moments is evaluated by comparison with a very high resolution spectral model within a 1D framework on representative microphysical processes: rain sedimentation and evaporation.


1982 ◽  
Vol 60 (8) ◽  
pp. 1101-1107
Author(s):  
C. V. Mathai ◽  
A. W. Harrison

As part of an ongoing general research program on the effects of atmospheric aerosols on visibility and its dependence on aerosol size distributions in Calgary, this paper presents the results of a comparative study of particle size distribution and visibility in residential (NW) and industrial (SE) sections of the city using a mobile laboratory. The study was conducted in the period October–December, 1979. An active scattering aerosol spectrometer measured the size distributions and the corresponding visibilities were deduced from scattering coefficients measured with an integrating nephelometer.The results of this transit study show significantly higher suspended particle concentrations and reduced visibilities in the SE than in the NW. The mean values of the visibilities are 44 and 97 km for the SE and the NW respectively. The exponent of R (particle radius) in the power law aerosol size distribution has a mean value of −3.36 ± 0.24 in the SE compared with the corresponding value of −3.89 ± 0.39 for the NW. These results arc in good agreement with the observations of Alberta Environment; however, they are in contradiction with a recent report published by the City of Calgary.


2010 ◽  
Vol 10 (2) ◽  
pp. 3605-3625
Author(s):  
G. Baumgarten ◽  
J. Fiedler ◽  
M. Rapp

Abstract. Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02. For the vertically resolved particle properties (Δz=0.15 km) the slope is smaller and only 0.39±0.03. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements.


1980 ◽  
Vol 17 (4) ◽  
pp. 956-967 ◽  
Author(s):  
H. L. MacGillivray

Important parameters of particle size distributions in dispersed systems in engineering and related fields are ratios of moments and inverse powers of these ratios, known as mean sizes. The variation in these parameters is examined for the simplest growth model in which the size distribution is translated, and the results for this process considered in relation to the problems of models of other growth processes. For initial size distributions with monotone hazard rate, the results are particularly significant, and the properties of the normalised moments of other distributions are also considered.


2019 ◽  
Vol 19 (5) ◽  
pp. 2787-2812 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5∘ N, 62.3∘ W), Eureka (80.1∘ N, 86.4∘ W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. AMSOA from a simulated flux (500 µgm-2day-1, north of 50∘ N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.


2019 ◽  
Vol 62 (2) ◽  
pp. 415-427 ◽  
Author(s):  
Reyna M. Knight ◽  
Xinjie Tong ◽  
Zhenyu Liu ◽  
Sewoon Hong ◽  
Lingying Zhao

Abstract. Poultry layer houses are a significant source of particulate matter (PM) emissions, which potentially affect worker and animal health. Particulate matter characteristics, such as concentration and size distribution inside layer houses, are critical information for assessment of the potential health risks and development of effective PM mitigation technologies. However, this information and its spatial and seasonal variations are lacking for typical layer facilities. In this study, two TSI DustTrak monitors (DRX 8533) and an Aerodynamic Particle Sizer (APS 3321) were used to measure PM mass concentrations and number-weighted particle size distributions in two typical manure-belt poultry layer houses in Ohio in three seasons: summer, autumn, and winter. Bimodal particle size distributions were consistently observed. The average count median diameters (mean ±SD) were 1.68 ±0.25, 2.16 ±0.31, and 1.87 ±0.07 µm in summer, autumn, and winter, respectively. The average geometric standard deviations of particle size were 2.16 ±0.23, 2.16 ±0.18, and 1.74 ±0.17 in the three seasons, respectively. The average mass concentrations were 67.4 ±54.9, 289.9 ±216.2, and 428.1 ±269.9 µg m-3 for PM2.5; 73.6 ±59.5, 314.6 ±228.9, and 480.8 ±306.5 µg m-3 for PM4; and 118.8 ±99.6, 532.5 ±353.0, and 686.2 ±417.7 µg m-3 for PM10 in the three seasons, respectively. Both statistically significant (p < 0.05) and practically significant (difference of means >20% of smaller value) seasonal variations were observed. Spatial variations were only practically significant for autumn mass concentrations, likely due to external dust infiltration from nearby agricultural activities. The OSHA-mandated permissible exposure limit for respirable PM was not exceeded in any season. Keywords: Air quality, Particulate matter, Poultry housing, Seasonal variation, Spatial variation.


2018 ◽  
Vol 11 (6) ◽  
pp. 3491-3509 ◽  
Author(s):  
Christina Williamson ◽  
Agnieszka Kupc ◽  
James Wilson ◽  
David W. Gesler ◽  
J. Michael Reeves ◽  
...  

Abstract. Earth's radiation budget is affected by new particle formation (NPF) and the growth of these nanometre-scale particles to larger sizes where they can directly scatter light or act as cloud condensation nuclei (CCN). Large uncertainties remain in the magnitude and spatiotemporal distribution of nucleation (less than 10 nm diameter) and Aitken (10–60 nm diameter) mode particles. Acquiring size-distribution measurements of these particles over large regions of the free troposphere is most easily accomplished with research aircraft. We report on the design and performance of an airborne instrument, the nucleation mode aerosol size spectrometer (NMASS), which provides size-selected aerosol concentration measurements that can be differenced to identify aerosol properties and processes or inverted to obtain a full size distribution between 3 and 60 nm. By maintaining constant downstream pressure the instrument operates reliably over a large range of ambient pressures and during rapid changes in altitude, making it ideal for aircraft measurements from the boundary layer to the stratosphere. We describe the modifications, operating principles, extensive calibrations, and laboratory and in-flight performance of two NMASS instruments operated in parallel as a 10-channel battery of condensation particle counters (CPCs) in the NASA Atmospheric Tomography Mission (ATom) to investigate NPF and growth to cloud-active sizes in the remote free troposphere. An inversion technique to obtain size distributions from the discrete concentrations of each NMASS channel is described and evaluated. Concentrations measured by the two NMASS instruments flying in parallel are self-consistent and also consistent with measurements made with an optical particle counter. Extensive laboratory calibrations with a range of particle sizes and compositions show repeatability of the response function of the instrument to within 5–8 % and no sensitivity in sizing performance to particle composition. Particle number, surface area, and volume concentrations from the data inversion are determined to better than 20 % for typical particle size distributions. The excellent performance of the NMASS systems provides a strong analytical foundation to explore NPF around the globe in the ATom dataset.


Sign in / Sign up

Export Citation Format

Share Document