scholarly journals The Monash Simple Climate Model Experiments (MSCM-DB v1.0): An interactive database of mean climate, climate change and scenario simulations

2018 ◽  
Author(s):  
Dietmar Dommenget ◽  
Kerry Nice ◽  
Tobias Bayr ◽  
Dieter Kasang ◽  
Christian Stassen ◽  
...  

Abstract. This study introduces the Monash Simple Climate Model (MSCM) experiment database. The model simulations are based on the Globally Resolved Energy Balance (GREB) model. They provide a basis to study three different aspects of climate model simulations: (1) understanding the processes that control the mean climate, (2) the response of the climate to a doubling of the CO2 concentration, and (3) scenarios of external CO2 concentration and solar radiation forcings. A series of sensitivity experiments in which elements of the climate system are turned off in various combinations are used to address (1) and (2). This database currently provides more than 1,300 experiments and has an online web interface for fast analysis of the experiments and for open access to the data. We briefly outline the design of all experiments, give a discussion of some results, and put the findings into the context of previously published results from similar experiments. We briefly discuss the quality and limitations of the MSCM experiments and also give an outlook on possible further developments. The GREB model simulation of the mean climate processes is quite realistic, but does have uncertainties in the order of 20–30 %. The GREB model without flux corrections has a root mean square error in mean state of about 10 °C, which is larger than those of general circulation models (2 °C). However, the MSCM experiments show good agreement to previously published studies. Although GREB is a very simple model, it delivers good first-order estimates, is very fast, highly accessible, and can be used to quickly try many different sensitivity experiments or scenarios.

2019 ◽  
Vol 12 (6) ◽  
pp. 2155-2179 ◽  
Author(s):  
Dietmar Dommenget ◽  
Kerry Nice ◽  
Tobias Bayr ◽  
Dieter Kasang ◽  
Christian Stassen ◽  
...  

Abstract. This study introduces the Monash Simple Climate Model (MSCM) experiment database. The simulations are based on the Globally Resolved Energy Balance (GREB) model to study three different aspects of climate model simulations: (1) understanding processes that control the mean climate, (2) the response of the climate to a doubling of the CO2 concentration, and (3) scenarios of external forcing (CO2 concentration and solar radiation). A series of sensitivity experiments in which elements of the climate system are turned off in various combinations are used to address (1) and (2). This database currently provides more than 1300 experiments and has an online web interface for fast analysis and free access to the data. We briefly outline the design of all experiments, give a discussion of some results, put the findings into the context of previously published results from similar experiments, discuss the quality and limitations of the MSCM experiments, and also give an outlook on possible further developments. The GREB model simulation is quite realistic, but the model without flux corrections has a root mean square error in the mean state of the surface temperature of about 10 ∘C, which is larger than those of general circulation models (2 ∘C). It needs to be noted here that the GREB model does not simulate circulation changes or changes in cloud cover (feedbacks). However, the MSCM experiments show good agreement to previously published studies. Although GREB is a very simple model, it delivers good first-order estimates, is very fast, highly accessible, and can be used to quickly try many different sensitivity experiments or scenarios. It builds a basis on which conceptual ideas can be tested to first order and it provides a null hypothesis for understanding complex climate interactions in the context of response to external forcing or interactions in the climate subsystems.


2007 ◽  
Vol 20 (23) ◽  
pp. 5677-5695 ◽  
Author(s):  
Prashant D. Sardeshmukh ◽  
Philip Sura

Abstract While it is obvious that the mean diabatic forcing of the atmosphere is crucial for maintaining the mean climate, the importance of diabatic forcing fluctuations is less evident in this regard. Such fluctuations do not appear directly in the equations of the mean climate but affect the mean indirectly through their effects on the time-mean transient-eddy fluxes of heat, momentum, and moisture. How large are these effects? What are the effects of tropical phenomena associated with substantial heating variations such as ENSO and the MJO? To what extent do variations of the extratropical surface heat fluxes and precipitation affect the mean climate? What are the effects of the rapid “stochastic” components of the heating fluctuations? Most current climate models misrepresent ENSO and the MJO and ignore stochastic forcing; they therefore also misrepresent their mean effects. To what extent does this contribute to climate model biases and to projections of climate change? This paper provides an assessment of such impacts by comparing with observations a long simulation of the northern winter climate by a dry adiabatic general circulation model forced only with the observed time-mean diabatic forcing as a constant forcing. Remarkably, despite the total neglect of all forcing variations, the model reproduces most features of the observed circulation variability and the mean climate, with biases similar to those of some state-of-the-art general circulation models. In particular, the spatial structures of the circulation variability are remarkably well reproduced. Their amplitudes, however, are progressively underestimated from the synoptic to the subseasonal to interannual and longer time scales. This underestimation is attributed to the neglect of the variable forcing. The model also excites significant tropical variability from the extratropics on interannual scales, which is overwhelmed in reality by the response to tropical heating variability. It is argued that the results of this study suggest a role for the stochastic, and not only the coherent, components of transient diabatic forcing in the dynamics of climate variability and the mean climate.


2019 ◽  
Vol 10 (4) ◽  
pp. 729-739 ◽  
Author(s):  
Adria K. Schwarber ◽  
Steven J. Smith ◽  
Corinne A. Hartin ◽  
Benjamin Aaron Vega-Westhoff ◽  
Ryan Sriver

Abstract. Simple climate models (SCMs) are numerical representations of the Earth's gas cycles and climate system. SCMs are easy to use and computationally inexpensive, making them an ideal tool in both scientific and decision-making contexts (e.g., complex climate model emulation, parameter estimation experiments, climate metric calculations, and probabilistic analyses). Despite their prolific use, the fundamental responses of SCMs are often not directly characterized. In this study, we use fundamental impulse tests of three chemical species (CO2, CH4, and black carbon – BC) to understand the fundamental gas cycle and climate system responses of several comprehensive (Hector v2.0, MAGICC 5.3, MAGICC 6.0) and idealized (FAIR v1.0, AR5-IR) SCMs. We find that while idealized SCMs are widely used, they fail to capture the magnitude and timescales of global mean climate responses under emissions perturbations, which can produce biased temperature results. Comprehensive SCMs, which have physically based nonlinear forcing and carbon cycle representations, show improved responses compared to idealized SCMs. Even the comprehensive SCMs, however, fail to capture the response timescales to BC emission perturbations seen recently in two general circulation models. Some comprehensive SCMs also generally respond faster than more complex models to a 4×CO2 concentration perturbation, although this was not evident for lower perturbation levels. These results suggest where improvements should be made to SCMs. Further, we demonstrate here a set of fundamental tests that we recommend as a standard evaluation suite for any SCM. Fundamental impulse tests allow users to understand differences in model responses and the impact of model selection on results.


2008 ◽  
Vol 8 (21) ◽  
pp. 6505-6525 ◽  
Author(s):  
H. J. Punge ◽  
M. A. Giorgetta

Abstract. The quasi-biennial oscillation (QBO) of zonal wind is a prominent mode of variability in the tropical stratosphere. It affects not only the meridional circulation and temperature over a wide latitude range but also the transport and chemistry of trace gases such as ozone. Compared to a QBO less circulation, the long-term climatological means of these quantities are also different. These climatological net effects of the QBO can be studied in general circulation models that extend into the middle atmosphere and have a chemistry and transport component, so-called Chemistry Climate Models (CCMs). In this work we show that the CCM MAECHAM4-CHEM can reproduce the observed QBO variations in temperature and ozone mole fractions when nudged towards observed winds. In particular, it is shown that the QBO signal in transport of nitrogen oxides NOx plays an important role in reproducing the observed ozone QBO, which features a phase reversal slightly below the level of maximum of the ozone mole fraction in the tropics. We then compare two 20-year experiments with the MAECHAM4-CHEM model that differ by including or not including the QBO. The mean wind fields differ between the two model runs, especially during summer and fall seasons in both hemispheres. The differences in the wind field lead to differences in the meridional circulation, by the same mechanism that causes the QBO's secondary meridional circulation, and thereby affect mean temperatures and the mean transport of tracers. In the tropics, the net effect on ozone is mostly due to net differences in upwelling and, higher up, the associated temperature change. We show that a net surplus of up to 15% in NOx in the tropics above 10 hPa in the experiment that includes the QBO does not lead to significantly different volume mixing ratios of ozone. We also note a slight increase in the southern vortex strength as well as earlier vortex formation in northern winter. Polar temperatures differ accordingly. Differences in the strength of the Brewer-Dobson circulation and in further trace gas concentrations are analysed. Our findings underline the importance of a representation of the QBO in CCMs.


2011 ◽  
Vol 11 (4) ◽  
pp. 1417-1456 ◽  
Author(s):  
M. Meinshausen ◽  
S. C. B. Raper ◽  
T. M. L. Wigley

Abstract. Current scientific knowledge on the future response of the climate system to human-induced perturbations is comprehensively captured by various model intercomparison efforts. In the preparation of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), intercomparisons were organized for atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models, named "CMIP3" and "C4MIP", respectively. Despite their tremendous value for the scientific community and policy makers alike, there are some difficulties in interpreting the results. For example, radiative forcings were not standardized across the various AOGCM integrations and carbon cycle runs, and, in some models, key forcings were omitted. Furthermore, the AOGCM analysis of plausible emissions pathways was restricted to only three SRES scenarios. This study attempts to address these issues. We present an updated version of MAGICC, the simple carbon cycle-climate model used in past IPCC Assessment Reports with enhanced representation of time-varying climate sensitivities, carbon cycle feedbacks, aerosol forcings and ocean heat uptake characteristics. This new version, MAGICC6, is successfully calibrated against the higher complexity AOGCMs and carbon cycle models. Parameterizations of MAGICC6 are provided. The mean of the emulations presented here using MAGICC6 deviates from the mean AOGCM responses by only 2.2% on average for the SRES scenarios. This enhanced emulation skill in comparison to previous calibrations is primarily due to: making a "like-with-like comparison" using AOGCM-specific subsets of forcings; employing a new calibration procedure; as well as the fact that the updated simple climate model can now successfully emulate some of the climate-state dependent effective climate sensitivities of AOGCMs. The diagnosed effective climate sensitivity at the time of CO2 doubling for the AOGCMs is on average 2.88 °C, about 0.33 °C cooler than the mean of the reported slab ocean climate sensitivities. In the companion paper (Part 2) of this study, we examine the combined climate system and carbon cycle emulations for the complete range of IPCC SRES emissions scenarios and the new RCP pathways.


2008 ◽  
Vol 8 (3) ◽  
pp. 12115-12162 ◽  
Author(s):  
H. J. Punge ◽  
M. A. Giorgetta

Abstract. The quasi-biennial oscillation (QBO) of zonal wind is a prominent mode of variability in the tropical stratosphere. It affects not only the meridional circulation and temperature over a wide latitude range but also the transport and chemistry of trace gases such as ozone. Compared to a QBO less circulation, the long-term climatological means of these quantities are also different. These climatological net effects of the QBO can be studied in general circulation models that extend into the middle atmosphere and have a chemistry and transport component, so-called Chemistry Climate Models (CCMs). In this work we show that the CCM MAECHAM4-CHEM can reproduce the observed QBO variations in temperature and ozone mole fractions when nudged towards observed winds. In particular, it is shown that the QBO signal in transport of nitrogen oxides NOx plays an important role in reproducing the observed ozone QBO, which features a phase reversal slightly below the maximum of the ozone mole fraction in the tropics. We then compare two 20-year experiments with the MAECHAM4-CHEM model that differ by including or not including the QBO. The mean wind fields differ between the two model runs, especially during summer and fall on both hemispheres. The differences in the wind field lead to differences in the meridional circulation, by the same mechanism that causes the QBO's secondary meridional circulation, and thereby affecting mean temperatures and the mean transport of tracers. In the tropics, the net effect on ozone is mostly due to net differences in upwelling and, higher up, the associated temperature change. We show that a net surplus of up to 15% in NOx in the tropics above 10 hPa in the experiment that includes the QBO does not lead to significantly different volume mixing ratios of ozone. We also note a slight increase in the southern vortex strength as well as earlier vortex formation in northern winter. Polar temperatures differ accordingly. Differences in the strength of the Brewer-Dobson circulation and in further trace gas concentrations are analysed. Our findings underline the importance of a representation of the QBO in CCMs.


2020 ◽  
Author(s):  
Janica Carmen Bühler ◽  
Carla Roesch ◽  
Moritz Kirschner ◽  
Louise Sime ◽  
Max D Holloway ◽  
...  

Abstract. Global changes in the climate, especially the warming trend in mean temperature, have received increasing public and scientific attention. Improving the understanding of changes in the mean and variability of climate variables as well as their interrelation is crucial for reliable climate change projections. Comparisons between general circulation models and paleoclimate archives using indirect proxies for temperature and/or precipitation have been used to test and validate the capability of climate models to represent climate changes. The oxygen isotopic ratio δ18O is routinely measured in speleothem samples at decadal or higher resolution and single specimens can cover full Glacial-Interglacial cycles. The calcium carbonate cave deposits are precisely dateable and provide well preserved (semi-) continuous, albeit multivariate climate signals in the lower and mid-latitudes, where the measured δ18O in the mineral does not directly represent temperature or precipitation. Therefore, speleothems represent suitable archives to assess simulated climate model abilities for the simulation of climate variability beyond the timescales covered by meteorological observations (10–100 yr). Here, we present three transient isotope enabled simulations from the Hadley Center Climate Model version 3 (iHadCM3) covering the last millennium (850–1850 CE) and compare these to a large global dataset of speleothem δ18O records from the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database version 2 (Comas-Bru et al., 2020). We evaluate systematically offsets in mean and variance of simulated δ18O and test for the main climate drivers for individual records or regions. The time-mean spatial offsets between the simulated δ18O and the speleothem data are fairly small. However, using robust filters and spectral analysis, we show that the observed proxy-based variability of δ18O is lower (higher) than simulated by iHadCM3 on decadal (centennial) timescales. Most of this difference can likely be attributed to the records' lower temporal resolution and averaging processes affecting the δ18O signal. Using cross-correlation analyses at site-level and modeled gridbox level, we find evidence for highly variable but generally low signal-to-noise ratios in the proxy data. This points at a high influence of cave-internal processes and regional climate particularities and could suggest low regional representativity of individual sites. Long-range strong positive correlations dominate the speleothem correlation network but are much weaker in the simulation. One reason for this could lie in a lack of longterm internal climate variability in these model simulations, which could be tested by repeating similar comparisons with other isotope-enabled climate models and paleoclimate databases.


2006 ◽  
Vol 19 (17) ◽  
pp. 4224-4233 ◽  
Author(s):  
Reto Knutti ◽  
Gerald A. Meehl ◽  
Myles R. Allen ◽  
David A. Stainforth

Abstract The estimated range of climate sensitivity has remained unchanged for decades, resulting in large uncertainties in long-term projections of future climate under increased greenhouse gas concentrations. Here the multi-thousand-member ensemble of climate model simulations from the climateprediction.net project and a neural network are used to establish a relation between climate sensitivity and the amplitude of the seasonal cycle in regional temperature. Most models with high sensitivities are found to overestimate the seasonal cycle compared to observations. A probability density function for climate sensitivity is then calculated from the present-day seasonal cycle in reanalysis and instrumental datasets. Subject to a number of assumptions on the models and datasets used, it is found that climate sensitivity is very unlikely (5% probability) to be either below 1.5–2 K or above about 5–6.5 K, with the best agreement found for sensitivities between 3 and 3.5 K. This range is narrower than most probabilistic estimates derived from the observed twentieth-century warming. The current generation of general circulation models are within that range but do not sample the highest values.


2006 ◽  
Vol 19 (13) ◽  
pp. 3294-3306 ◽  
Author(s):  
Andrei P. Sokolov

Abstract Simulation of both the climate of the twentieth century and a future climate change requires taking into account numerous forcings, while climate sensitivities of general circulation models are defined as the equilibrium surface warming due to a doubling of atmospheric CO2 concentration. A number of simulations with the Massachusetts Institute of Technology (MIT) climate model of intermediate complexity with different forcings have been carried out to study to what extent sensitivity to changes in CO2 concentration (SCO2) represent sensitivities to other forcings. The MIT model, similar to other models, shows a strong dependency of the simulated surface warming on the vertical structure of the imposed forcing. This dependency is a result of “semidirect” effects in the simulations with localized tropospheric heating. A method for estimating semidirect effects associated with different feedback mechanisms is presented. It is shown that forcing that includes these effects is a better measure of expected surface warming than a forcing that accounts for stratospheric adjustment only. Simulations with the versions of the MIT model with different strengths of cloud feedback show that, for the range of sensitivities produced by existing GCMs, SCO2 provides a good measure of the model sensitivity to other forcings. In the case of strong cloud feedback, sensitivity to the increase in CO2 concentration overestimates model sensitivity to both negative forcings, leading to the cooling of the surface and “black carbon”–like forcings with elevated heating. This is explained by the cloud feedback being less efficient in the case of increasing sea ice extent and snow cover or by the above-mentioned semidirect effects, which are absent in the CO2 simulations, respectively.


2007 ◽  
Vol 20 (16) ◽  
pp. 4147-4159 ◽  
Author(s):  
A. Timmermann ◽  
S. J. Lorenz ◽  
S-I. An ◽  
A. Clement ◽  
S-P. Xie

Abstract Using a coupled general circulation model, the responses of the climate mean state, the annual cycle, and the El Niño–Southern Oscillation (ENSO) phenomenon to orbital changes are studied. The authors analyze a 1650-yr-long simulation with accelerated orbital forcing, representing the period from 142 000 yr b.p. (before present) to 22 900 yr a.p. (after present). The model simulation does not include the time-varying boundary conditions due to ice sheet and greenhouse gas forcing. Owing to the mean seasonal cycle of cloudiness in the off-equatorial regions, an annual mean precessional signal of temperatures is generated outside the equator. The resulting meridional SST gradient in the eastern equatorial Pacific modulates the annual mean meridional asymmetry and hence the strength of the equatorial annual cycle. In turn, changes of the equatorial annual cycle trigger abrupt changes of ENSO variability via frequency entrainment, resulting in an anticorrelation between annual cycle strength and ENSO amplitude on precessional time scales.


Sign in / Sign up

Export Citation Format

Share Document