scholarly journals Supplementary material to "Extreme Events Representation in CMCC-CM2 High and Very-High Resolution General Circulation Models"

Author(s):  
Enrico Scoccimarro ◽  
Daniele Peano ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Tomas Lovato ◽  
...  
2021 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Daniele Peano ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Tomas Lovato ◽  
...  

Abstract. The recent advancements in climate modelling partially build on the improvement of horizontal resolution in different components of the simulating system. A higher resolution is expected to provide a better representation of the climate variability, and in this work we are particularly interested in the potential improvements in representing extreme events of high temperature and precipitation. The two versions of the CMCC-CM2 model used here, adopt the highest horizontal resolutions available within the last family of the global coupled climate models de¬veloped at CMCC to participate in the CMIP6 effort. The main aim of this study is to document the ability of the CMCC-CM2 models in representing the spatial distribution of extreme events of temperature and precipitation, under the historical period, comparing model results to observations (ERA5 Reanalysis and CHIRPS observations). For a more detailed evaluation we investigate both 6 hourly and daily time series for the definition of the extreme conditions. In terms of mean climate, the two models are able to realistically reproduce the main patterns of temperature and precipitation. The very-high resolution version (¼ degree horizontal resolution) of the atmospheric model provides better results than the high resolution one (one degree), not only in terms of means but also in terms of extreme events of temperature defined at daily and 6-hourly frequency. This is also the case of average precipitation. On the other hand the extreme precipitation is not improved by the adoption of a higher horizontal resolution.


2012 ◽  
Vol 25 (14) ◽  
pp. 4883-4897 ◽  
Author(s):  
Daniel Argüeso ◽  
José Manuel Hidalgo-Muñoz ◽  
Sonia Raquel Gámiz-Fortis ◽  
María Jesús Esteban-Parra ◽  
Yolanda Castro-Díez

Abstract The ability of the Weather Research and Forecasting model (WRF) to simulate precipitation over Spain is evaluated from a climatological point of view. The complex topography and the large rainfall variability make the Iberian Peninsula a particularly interesting region and permit assessment of model performance under very demanding conditions. Three high-resolution (10 km) simulations over the Iberian Peninsula have been completed spanning a 30-yr period (1970–99) and driven by different datasets: the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) as “perfect boundary conditions” and two general circulation models (GCMs), the Max Planck Institute ECHAM5 model (ECHAM5/MPI) and the NCAR Community Climate System Model, version 3 (CCSM3). The daily precipitation observational grid Spain02 is employed to evaluate the model at varying time scales. Not only are the long-term means (annual, seasonal, and monthly) examined but also the high-order statistics (extreme events). The WRF provides valuable information on precipitation at high resolution and enhances local spatial distribution due to orographic features. Although substantial errors are still observed in terms of monthly precipitation, especially during the spring, the model is largely able to capture the various precipitation regimes. The major benefits of using WRF are related to the spatial distribution of rainfall and the simulation of extreme events, two facets of climate that can be barely explored with GCMs. This study shows that WRF can be a useful tool for generating high-resolution climate information for Spanish precipitation at spatial and temporal scales that are crucial for both the environment and human life.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1594 ◽  
Author(s):  
Beatriz Garcia ◽  
Renata Libonati ◽  
Ana Nunes

The Amazon basin has experienced severe drought events for centuries, mainly associated with climate variability connected to tropical North Atlantic and Pacific sea surface temperature anomalous warming. Recently, these events are becoming more frequent, more intense and widespread. Because of the Amazon droughts environmental and socioeconomic impacts, there is an increased demand for understanding the characteristics of such extreme events in the region. In that regard, regional models instead of the general circulation models provide a promising strategy to generate more detailed climate information of extreme events, seeking better representation of physical processes. Due to uneven spatial distribution and gaps found in station data in tropical South America, and the need of more refined climate assessment in those regions, satellite-enhanced regional downscaling for applied studies (SRDAS) is used in the reconstruction of South American hydroclimate, with hourly to monthly outputs from January 1998. Accordingly, this research focuses on the analyses of recent extreme drought events in the years of 2005 and 2010 in the Amazon Basin, using the SRDAS monthly means of near-surface temperature and relative humidity, precipitation and vertically integrated soil moisture fields. Results from this analysis corroborate spatial and temporal patterns found in previous studies on extreme drought events in the region, displaying the distinctive features of the 2005 and 2010 drought events.


2021 ◽  
Author(s):  
Luca Famooss Paolini ◽  
Alessio Bellucci ◽  
Paolo Ruggieri ◽  
Panos Athanasiadis ◽  
Silvio Gualdi

<p>Western boundary currents transport a large amount of heat from the Tropics toward higher latitudes; furthermore they are characterized by a strong sea surface temperature (SST) gradient, which anchors zones of intense upward motion extending up to the upper-troposphere and shapes zones of intense baroclinic eddy activity (storm tracks). For such reasons they have been shown to be fundamental in influencing the climate of the Northern Hemisphere and its variability, and a potentially relevant source of atmospheric predictability. </p><p> </p><p>General circulation models show deficiencies in simulating the observed atmospheric response to SST front variability. The atmospheric horizontal resolution has been recently proposed as a key element in understanding such differences. However, the number of studies on this subject is still limited. Furthermore, a multi-model analysis to systematically investigate differences between low-resolution and high-resolution atmospheric response to oceanic forcing is still lacking. </p><p> </p><p>The present work has the objective to fill this gap, analysing the atmospheric response to Gulf Stream SST front shifting using data from recent High Resolution Model Intercomparison Project (HighResMIP). This project was designed with the specific objective of investigating the impact of increased model horizontal resolution on the representation of the observed climate. Ensembles of historical simulations performed with three atmospheric general circulation models (AGCMs) have been analysed, each conducted with a low-resolution (LR, about 1°) and a high-resolution (HR, about 0.25°) configuration. AGCMs have been forced with observed SSTs (HadISST2 dataset), available at daily frequency on a 0.25° grid, during 1950–2014. </p><p><br>Results show atmospheric responses to the SST-induced diabatic heating anomalies that are strongly resolution dependent. In LR simulations a low-pressure anomaly is present downstream of the SST anomaly, while the diabatic heating anomaly is mainly balanced by meridional advection of air coming from higher latitudes, as expected for an extra-tropical shallow heat source. In contrast, HR simulations generate a high-pressure anomaly downstream of the SST anomaly, thus driving positive temperature advection from lower latitudes (not balancing diabatic heating). Along the vertical direction, both in LR and HR simulation, the diabatic heating in the interior of the atmosphere is balanced by upward motion south of GS SST front and downward motion north and further south of the Gulf Stream. Finally, LR simulations show a reduction in storm-track activity over the North Atlantic, whereas HR simulations show a meridional displacement of the storm-track considerably larger (yet in the same direction) than that of the SST front. HR simulations reproduce the atmospheric response obtained from observations, albeit weaker. This is a hint for the existence of a positive feedback between ocean and atmosphere, as proposed in previous studies. These findings are qualitatively consistent with previous results in literature and, leveraging on recent coordinated modelling efforts, shed light on the effective role of atmospheric horizontal resolution in modelling the atmospheric response to extra-tropical oceanic forcing.</p>


2019 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future thermodynamic environments using the global Model for Prediction Across Scales-Atmosphere (MPAS) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select ten simulation years with varying phases of El Niño-Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analysed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most of Northern Hemispheric basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemispheric phenomena, and, more generally, the utility of MPAS for studying climate change at spatial scales generally unachievable in GCMs.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Theodoros Katopodis ◽  
Iason Markantonis ◽  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos

In the context of climate change and growing energy demand, solar technologies are considered promising solutions to mitigate Greenhouse Gas (GHG) emissions and support sustainable adaptation. In Greece, solar power is the second major renewable energy, constituting an increasingly important component of the future low-carbon energy portfolio. In this work, we propose the use of a high-resolution regional climate model (Weather Research and Forecasting model, WRF) to generate a solar climate atlas for the near-term climatological future under the Representative Concentration Pathway (RCPs) 4.5 and 8.5 scenarios. The model is set up with a 5 × 5 km2 spatial resolution, forced by the ERA-INTERIM for the historic (1980–2004) period and by the EC-EARTH General Circulation Models (GCM) for the future (2020–2044). Results reaffirm the high quality of solar energy potential in Greece and highlight the ability of the WRF model to produce a highly reliable future climate solar atlas. Projected changes between the annual historic and future RCPs scenarios indicate changes of the annual Global Horizontal Irradiance (GHI) in the range of ±5.0%. Seasonal analysis of the GHI values indicates percentage changes in the range of ±12% for both scenarios, with winter exhibiting the highest seasonal increases in the order of 10%, and autumn the largest decreases. Clear-sky fraction fclear projects increases in the range of ±4.0% in eastern and north continental Greece in the future, while most of the Greek marine areas might expect above 220 clear-sky days per year.


Author(s):  
Daisuke Matsuoka ◽  
Fumiaki Araki ◽  
Hideharu Sasaki

Numerical study of ocean eddies has been carried out by using high-resolution ocean general circulation models. In order to understand ocean eddies from the large volume data produced by simulations, visualizing only eddy distribution at each time step is insufficient; time-variations in eddy events and phenomena must also be considered. However, existing methods cannot precisely find and track eddy events such as amalgamation and bifurcation. In this study, we propose an original approach for eddy detection, tracking, and event visualization based on an eddy classification system. The proposed method detects streams and currents as well as eddies, and it classifies discovered eddies into several categories using the additional stream and current information. By tracking how the classified eddies vary over time, detecting events such as eddy amalgamation and bifurcation as well as the interaction between eddies and ocean currents becomes achievable. We adopt the proposed method for two ocean areas in which strong ocean currents exist as case studies. We visualize the detected eddies and events in a time series of images, allowing us to acquire an intuitive understanding of a region of interest concealed in a high-resolution data set. Furthermore, our proposed method succeeded in clarifying the occurrence place and seasonality of each type of eddy event.


2019 ◽  
Vol 12 (8) ◽  
pp. 3725-3743 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future environments using the global Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select 10 simulation years with varying phases of El Niño–Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analyzed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most Northern Hemisphere basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemisphere phenomena, and, more generally, the utility of MPAS-A for studying climate change at spatial scales generally unachievable in GCMs.


Sign in / Sign up

Export Citation Format

Share Document