scholarly journals Weaknesses in dust emission modelling hidden by tuning to dust in the atmosphere

2021 ◽  
Author(s):  
Adrian Chappell ◽  
Nicholas Webb ◽  
Mark Hennen ◽  
Charles Zender ◽  
Philippe Ciais ◽  
...  

Abstract. Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Vegetation is a major control on dust emission because it extracts momentum from the wind and shelters the soil surface, protecting dry and loose material from erosion by winds. Many of the current dust emission models (TEM) assume that the Earth’s land surface is constantly devoid of vegetation, then adjust the dust emission using a vegetation cover reciprocal, and finally calibrate to dust in the atmosphere. We compare this approach with an albedo-based dust emission model (AEM) which calibrates Earth’s land surface shadow to shelter depending on wind speed, to represent aerodynamic roughness spatio-temporal variation. We also compare these dust emission models with estimates of dust in the atmosphere using dust optical depth frequency (DOD). Using existing datasets of satellite observed dust emission from dust point sources (DPS), we show that during the same period, DOD frequency exceeds DPS frequency by up to two orders of magnitude (RMSEDOD = 67 days). Relative to DPS frequency, both models over-estimated dust emission frequency by up to one order of magnitude (RMSETEM = 6 days; RMSEAEM = 4 days) but showed strong relations with DPS frequency suitable for calibrating models to observed dust emission. Theoretically, the TEM is incomplete in its formulation, which despite the pragmatic adjustment using the vegetation cover reciprocal, causes dust emission to be highly dependent on wind speed and over-estimates large (> 0.1 kg m−2 a−1) dust emission over vast vegetated areas. Consequently, the TEM produces considerable falsely positive change in dust emission, relative to the AEM. Since the main difference between the dust emission models is the treatment of aerodynamic roughness we conclude that its crude representation in the TEM has caused large, previously unknown, uncertainty in Earth System Models (ESMs). Our results indicate that tuning dust emission models to dust in the atmosphere has hidden for more than two decades, these TEM modelling weaknesses and its poor performance. The AEM overcomes these weaknesses and improves performance without tuning. In ESMs the AEM can be driven by available prognostic albedo to represent the fidelity of drag partition physics to reduce uncertainty of aerosol effects on, and responses to, contemporary and future environmental change.

2022 ◽  
Author(s):  
Mark Hennen ◽  
Adrian Chappell ◽  
Nicholas Webb ◽  
Kerstin Schepanski ◽  
Matthew Baddock ◽  
...  

Abstract. Measurements of dust in the atmosphere have long been used to calibrate dust emission models. However, there is growing recognition that atmospheric dust confounds the magnitude and frequency of emission from dust sources and hides potential weaknesses in dust emission model formulation. In the satellite era, dichotomous (presence = 1 or absence = 0) observations of dust emission point sources (DPS) provide a valuable inventory of regional dust emission. We used these DPS data to develop an open and transparent framework to routinely evaluate dust emission model (development) performance using coincidence of simulated and observed dust emission (or lack of emission). To illustrate the utility of this framework, we evaluated the recently developed albedo-based dust emission model (AEM) which included the traditional entrainment threshold (u*ts) at the grain scale, fixed over space and static over time, with sediment supply infinite everywhere. For comparison with the dichotomous DPS data, we reduced the AEM simulations to its frequency of occurrence in which soil surface wind friction velocity (us*) exceeds the u*ts, P(us* > u*ts). We used a global collation of nine DPS datasets from established studies to describe the spatio-temporal variation of dust emission frequency. A total of 37,352 unique DPS locations were aggregated into 1,945 1° grid boxes to harmonise data across the studies which identified a total of 59,688 dust emissions. The DPS data alone revealed that dust emission does not usually recur at the same location, are rare (1.8 %) even in North Africa and the Middle East, indicative of extreme, large wind speed events. The AEM over-estimated the occurrence of dust emission by between 1 and 2 orders of magnitude. More diagnostically, the AEM simulations coincided with dichotomous observations ~71 % of the time but simulated dust emission ~27 % of the time when no dust emission was observed. Our analysis indicates that u*ts was typically too small, needed to vary over space and time, and at the grain-scale u*ts is incompatible with the us* scale (MODIS 500 m). During observed dust emission, us* was too small because wind speeds were too small and/or the wind speed scale (ERA5; 11 km) is incompatible with the us* scale. The absence of any limit to sediment supply caused the AEM to simulate dust emission whenever P (us* > u*ts), producing many false positives when and where wind speeds were frequently large. Dust emission model scaling needs to be reconciled and new parameterisations are required for u*ts and to restrict sediment supply varying over space and time. Whilst u*ts remains poorly constrained and unrealistic assumptions persist about sediment supply and availability, the DPS data provide a basis for the calibration of dust emission models for operational use. As dust emission models develop, these DPS data provide a consistent, reproducible, and valid framework for their routine evaluation and potential model optimisation. This work emphasises the growing recognition that dust emission models should not be evaluated against atmospheric dust.


2016 ◽  
Author(s):  
M. Kajino ◽  
M. Ishizuka ◽  
Y. Igarashi ◽  
K. Kita ◽  
C. Yoshikawa ◽  
...  

Abstract. The long-term effect of 137Cs re-suspension from contaminated soil and forests due to the Fukushima nuclear accident has been quantitatively assessed by numerical simulation, a field experiment on dust emission flux in the contaminated area (Namie, Fukushima), and air concentration measurements inside (Namie) and outside (Tsukuba, Ibaraki) the contaminated area. The assessment period is for the year 2013 just after the start of the field experiments, December 14, 2012. The 137Cs concentrations at Namie and Tsukuba were approximately 10−1–1 and 10−2–10−1 mBq/m3, respectively. The observed monthly median concentration at Namie was one to two orders of magnitude larger than that at Tsukuba. This observed difference between the two sites was consistent with the simulated difference, indicating successful modeling of 137Cs re-suspension and atmospheric transport. The estimated re-suspension rate was approximately 10−6/d, which was significantly lower than the decreasing rate of the ambient gamma dose rate in Fukushima prefecture (10−4–10−3/d) as a result of radioactive decay, land surface processes (migration in the soil and biota), and decontamination. Consequently, re-suspension contributed negligibly to reducing ground radioactivity. The dust emission model could account for the air concentration of 137Cs in winter, whereas the summer air concentration was underestimated by one to two orders of magnitude. Re-suspension from forests at a constant rate of 10−7/h, multiplied by the green area fraction, quantitatively accounted for the air concentration of 137Cs at Namie and its seasonal variation. The simulated contribution of dust re-suspension to the air concentration was 0.6–0.8 in the cold season and 0.1–0.4 in the warm season at both sites; the remainder of the contribution was re-suspension from forest. The re-suspension mechanisms, especially through the forest ecosystems, remain unknown, and thus the current study is the first but crude estimation of the long-term assessment of radiocesium re-suspension. Further study will be needed to understand the re-suspension mechanisms and to accurately assess the re-suspension mechanisms through field experiments and numerical simulations.


2019 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Muhammad Nasar -u-Minallah

Land surface temperature (LST) is an important parameter in global climate change and urban thermalenvironmental studies. The significance of land surface temperature is being acknowledged gradually and interest isincreasing in developing methodologies for the retrieval of LST from Satellite Remote Sensing (SRS) data. ThermalInfrared Sensor (TIRS) of Landsat-8 is the newest TIR sensor for the Landsat Data Continuity Mission (LDCM),offering two adjacent thermal infrared bands (10, 11), having significant beneficiary for the land surface temperatureinversion. The spectral radiance can be estimated through TIR bands 10 and 11 of Landsat-8 OLI_TIRS satellite image.In the present study, the radiative transfer equation-based method has been employed in estimating LST of Lahore andthe analysis demonstrated that estimated LST has the highest accuracy from the radiative transfer method through band10. Land Surface Emissivity (LSE) was derived with the aid of the NDVI’s threshold technique. The present studyresults show that as the built-up area increases and vegetation cover decreases in urban surface, they are linked toincrease in urban land surface temperature and conversely larger vegetation cover associated with lower urbantemperature. The output exposed that LST was high in built-up and barren land, whereas it was low in the area wherethere were more vegetation cover and water.


Author(s):  
Muhammad Nasar -u-Minallah

Land surface temperature (LST) is an important parameter in global climate change and urban thermalenvironmental studies. The significance of land surface temperature is being acknowledged gradually and interest isincreasing in developing methodologies for the retrieval of LST from Satellite Remote Sensing (SRS) data. ThermalInfrared Sensor (TIRS) of Landsat-8 is the newest TIR sensor for the Landsat Data Continuity Mission (LDCM),offering two adjacent thermal infrared bands (10, 11), having significant beneficiary for the land surface temperatureinversion. The spectral radiance can be estimated through TIR bands 10 and 11 of Landsat-8 OLI_TIRS satellite image.In the present study, the radiative transfer equation-based method has been employed in estimating LST of Lahore andthe analysis demonstrated that estimated LST has the highest accuracy from the radiative transfer method through band10. Land Surface Emissivity (LSE) was derived with the aid of the NDVI’s threshold technique. The present studyresults show that as the built-up area increases and vegetation cover decreases in urban surface, they are linked toincrease in urban land surface temperature and conversely larger vegetation cover associated with lower urbantemperature. The output exposed that LST was high in built-up and barren land, whereas it was low in the area wherethere were more vegetation cover and water.


2020 ◽  
Vol 117 (40) ◽  
pp. 24729-24734
Author(s):  
Xiaomin Fang ◽  
Zhisheng An ◽  
Steven C. Clemens ◽  
Jinbo Zan ◽  
Zhengguo Shi ◽  
...  

Midlatitude Asia (MLA), strongly influenced by westerlies-controlled climate, is a key source of global atmospheric dust, and plays a significant role in Earth’s climate system . However, it remains unclear how the westerlies, MLA aridity, and dust flux from this region evolved over time. Here, we report a unique high-resolution eolian dust record covering the past 3.6 Ma, retrieved from the thickest loess borehole sequence (671 m) recovered to date, at the southern margin of the Taklimakan desert in the MLA interior. The results show that eolian dust accumulation, which is closely related to aridity and the westerlies, indicates existence of a dry climate, desert area, and stable land surface, promoting continuous loess deposition since at least ∼3.6 Ma. This region experienced long-term stepwise drying at ∼2.7, 1.1, and 0.5 Ma, coeval with a dominant periodicity shift from 41-ka cyclicity to 100-ka cyclicity between 1.1 Ma and 0.5 Ma. These features match well with global ice volume variability both in the time and frequency domains (including the Mid-Pleistocene Transition), highlighting global cooling-forced aridity and westerlies climate changes on these timescales. Numerical modeling demonstrates that global cooling can dry MLA and intensify the westerlies, which facilitates dust emission and transport, providing an interpretive framework. Increased dust may have promoted positive feedbacks (e.g., decreasing atmospheric CO2 concentrations and modulating radiation budgets), contributing to further cooling. Unraveling the long-term evolution of MLA aridity and westerlies climate is an indispensable component of the unfolding mystery of global climate change.


2011 ◽  
Vol 11 (7) ◽  
pp. 19995-20012 ◽  
Author(s):  
J. F. Kok

Abstract. The size distribution of mineral dust aerosols greatly affects their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical dust emission models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. This finding is consistent with the recently formulated brittle fragmentation theory of dust emission, but inconsistent with other theoretical dust emission models. The independence of the emitted dust size distribution with wind speed simplifies both the parameterization of dust emission in atmospheric circulation models as well as the interpretation of geological records of dust deposition.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


Sign in / Sign up

Export Citation Format

Share Document