scholarly journals Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects

2016 ◽  
Vol 9 (7) ◽  
pp. 2533-2547 ◽  
Author(s):  
Rita Nogherotto ◽  
Adrian Mark Tompkins ◽  
Graziano Giuliani ◽  
Erika Coppola ◽  
Filippo Giorgi

Abstract. We implement and evaluate a new parameterization scheme for stratiform cloud microphysics and precipitation within regional climate model RegCM4. This new parameterization is based on a multiple-phase one-moment cloud microphysics scheme built upon the implicit numerical framework recently developed and implemented in the ECMWF operational forecasting model. The parameterization solves five prognostic equations for water vapour, cloud liquid water, rain, cloud ice, and snow mixing ratios. Compared to the pre-existing scheme, it allows a proper treatment of mixed-phase clouds and a more physically realistic representation of cloud microphysics and precipitation. Various fields from a 10-year long integration of RegCM4 run in tropical band mode with the new scheme are compared with their counterparts using the previous cloud scheme and are evaluated against satellite observations. In addition, an assessment using the Cloud Feedback Model Intercomparison Project (CFMIP) Observational Simulator Package (COSP) for a 1-year sub-period provides additional information for evaluating the cloud optical properties against satellite data. The new microphysics parameterization yields an improved simulation of cloud fields, and in particular it removes the overestimation of upper level cloud characteristics of the previous scheme, increasing the agreement with observations and leading to an amelioration of a long-standing problem in the RegCM system. The vertical cloud profile produced by the new scheme leads to a considerably improvement of the representation of the longwave and shortwave components of the cloud radiative forcing.

2016 ◽  
Author(s):  
Rita Nogherotto ◽  
Adrian Mark Tompkins ◽  
Graziano Giuliani ◽  
Erika Coppola ◽  
Filippo Giorgi

Abstract. We implement and evaluate a new parameterization scheme for stratiform cloud microphysics and precipitation within the regional climate model RegCM4. This new parameterization is based on a multiple phase one-moment cloud microphysics scheme built upon the implicit numerical framework recently developed and implemented into the ECMWF operational forecasting model. The parameterization solves 5 prognostic equations for water vapour, cloud liquid water, rain, cloud ice and snow mixing ratios. Compared to the pre-existing scheme, it allows a proper treatment of mixed-phase clouds and a more physically realistic representation of cloud miscrophysics and precipitation. Various fields from a 10-yr-long integration of RegCM4 run in tropical band mode with the new scheme are compared with their counterparts using the previous cloud scheme as well as with satellite observations through the use of the COSP simulator. The new microphysics parameterization yields an improved simulation of cloud fields and in particular it removes the overestimation of upper level clouds characteristics of the previous scheme, increasing the agreement with observations and leading to an amelioration of a long-standing problem in the RegCM system. The vertical cloud profile produced by the new scheme leads to a considerably improvement of the representation of the longwave and shortwave components of the cloud radiative forcing.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


Author(s):  
А.А. Лагутин ◽  
Н.В. Волков ◽  
Е.Ю. Мордвин

Представлены результаты исследований влияния глобальных климатических изменений системы Земля на климат Западной Сибири. Для установления зон региона, в которых к середине XXI в. прогнозируются изменения, использовались модельные данные региональной климатической модели RegCM4 и принятые в этом классе задач стандартизованные евклидовы расстояния между характеристиками климата для двух состояний климатической системы — современного и будущего. Установлены зоны Западной Сибири, в которых в рамках сценариев RCP 4.5 и RCP 8.5 возможной эволюции глобальной системы к 2050 г. прогнозируются изменения климата. Purpose. An analysis of the influence of a global climate changes on the climate of Western Siberia, determination of zones of the region where changes are expected in the middle of the twenty-first century. Methodology. Results obtained using the model data of the regional climate model RegCM4 and the standardized Euclidean distances between climate characteristics. Findings, originality. Simulations of the climate characteristics for the two states of the climate system — contemporary and future — have been carried out. The zones of Western Siberia region, in which climate change is expected in the framework of RCP 4.5 and RCP 8.5 radiative forcing scenarios by the 2050, have been determined.


2013 ◽  
Vol 13 (3) ◽  
pp. 1177-1192 ◽  
Author(s):  
C. Knote ◽  
D. Brunner

Abstract. Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass was increased by 10% on average. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley) while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i.e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system tends to underestimate the total wet deposited mass for the simulated case study.


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


2016 ◽  
Author(s):  
Malte Meinshausen ◽  
Elisabeth Vogel ◽  
Alexander Nauels ◽  
Katja Lorbacher ◽  
Nicolai Meinshausen ◽  
...  

Abstract. Atmospheric greenhouse gas concentrations are at unprecedented, record-high levels compared to pre-industrial reconstructions over the last 800,000 years. Those elevated greenhouse gas concentrations warm the planet and together with net cooling effects by aerosols, they are the reason of observed climate change over the past 150 years. An accurate representation of those concentrations is hence important to understand and model recent and future climate change. So far, community efforts to create composite datasets with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since 1980s. Here, we provide consolidated data sets of historical atmospheric (volume) mixing ratios of 43 greenhouse gases specifically for the purpose of climate model runs. The presented datasets are based on AGAGE and NOAA networks and a large set of literature studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved, and include seasonality over the period between year 0 to 2014. We assimilate data for CO2, methane (CH4) and nitrous oxide (N2O), 5 chlorofluorocarbons (CFCs), 3 hydrochlorofluorocarbons (HCFCs), 16 hydrofluorocarbons (HFCs), 3 halons, methyl bromide (CH3Br), 3 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen triflouride (NF3) and sulfuryl fluoride (SO2F2). We estimate 1850 annual and global mean surface mixing ratios of CO2 at 284.3 ppmv, CH4 at 808.2 ppbv and N2O at 273.0 ppbv and quantify the seasonal and hemispheric gradients of surface mixing ratios. Compared to earlier intercomparisons, the stronger implied radiative forcing in the northern hemisphere winter (due to the latitudinal gradient and seasonality) may help to improve the skill of climate models to reproduce past climate and thereby reduce uncertainty in future projections.


Sign in / Sign up

Export Citation Format

Share Document