scholarly journals Simulations of changes to Glaciar Zongo, Bolivia (16° S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections

2015 ◽  
Vol 56 (70) ◽  
pp. 89-97 ◽  
Author(s):  
Marion Réveillet ◽  
Antoine Rabatel ◽  
Fabien Gillet-Chaulet ◽  
Alvaro Soruco

AbstractBolivian glaciers are an essential source of fresh water for the Altiplano, and any changes they may undergo in the near future due to ongoing climate change are of particular concern. Glaciar Zongo, Bolivia, located near the administrative capital La Paz, has been extensively monitored by the GLACIOCLIM observatory in the last two decades. Here we model the glacier dynamics using the 3-D full-Stokes model Elmer/Ice. The model was calibrated and validated over a recent period (1997–2010) using four independent datasets: available observations of surface velocities and surface mass balance were used for calibration, and changes in surface elevation and retreat of the glacier front were used for validation. Over the validation period, model outputs are in good agreement with observations (differences less than a small percentage). The future surface mass balance is assumed to depend on the equilibrium-line altitude (ELA) and temperature changes through the sensitivity of ELA to temperature. The model was then forced for the 21st century using temperature changes projected by nine Coupled Model Intercomparison Project phase 5 (CMIP5) models. Here we give results for three different representative concentration pathways (RCPs). The intermediate scenario RCP6.0 led to 69 ± 7% volume loss by 2100, while the two extreme scenarios, RCP2.6 and RCP8.5, led to 40 ± 7% and 89 ± 4% loss of volume, respectively.

2021 ◽  
Author(s):  
Fredrik Boberg ◽  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Shuting Yang ◽  
Peter L. Langen

Abstract. The future rates of ice sheet melt in Greenland and Antarctica are an important factor when making estimates of the likely rate of sea level rise. Global climate models that took part in the fifth Coupled Model Intercomparison Project (CMIP5) have generally been unable to replicate observed rates of ice sheet melt. With the advent of the sixth Coupled Model Intercomparison Project (CMIP6), with a general increase in the equilibrium climate sensitivity, we here compare two versions of the global climate model EC-Earth using the regional climate model HIRHAM5 downscaling EC-Earth for Greenland and Antarctica. One version (v2) of EC-Earth is taken from CMIP5 for the high-emissions Representative Concentration Pathways (RCP8.5) scenario and the other (v3) from CMIP6 for the comparable high-emissions Shared Socioeconomic Pathways (SSP5-8.5) scenario). For Greenland, we downscale the two versions of EC-Earth for the historical period 1991–2010 and for the scenario period 2081–2100. For Antarctica, the periods are 1971–2000 and 2071–2100, respectively. For the Greenland Ice Sheet, we find that the mean change in temperature is 5.9 °C when downscaling EC-Earth v2 and 6.8 °C when downscaling EC-Earth v3. Corresponding values for Antarctica are 4.1 °C for v2 and 4.8 °C for v3. The mean change in surface mass balance at the end of the century under these high emissions scenarios is found to be −210 Gt yr−1 (v2) and −1150 Gt yr−1 (v3) for Greenland and 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3) for Antarctica. These distinct differences in temperature change and particularly surface mass balance change are a result of the higher equilibrium climate sensitivity in EC-Earth v3 (4.3 K) compared with 3.3 K in EC-Earth v2 and the differences in greenhouse gas concentrations between the RCP8.5 and the SSP5-8.5 scenarios.


2022 ◽  
Vol 16 (1) ◽  
pp. 17-33
Author(s):  
Fredrik Boberg ◽  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Shuting Yang ◽  
Peter L. Langen

Abstract. The future rates of ice sheet melt in Greenland and Antarctica are an important factor when making estimates of the likely rate of sea level rise. Global climate models that took part in the fifth Coupled Model Intercomparison Project (CMIP5) have generally been unable to replicate observed rates of ice sheet melt. With the advent of the sixth Coupled Model Intercomparison Project (CMIP6), with a general increase in the equilibrium climate sensitivity, we here compare two versions of the global climate model EC-Earth using the regional climate model HIRHAM5 downscaling of EC-Earth for Greenland and Antarctica. One version (v2) of EC-Earth is taken from CMIP5 for the high-emissions Representative Concentration Pathway 8.5 (RCP8.5) scenario and the other (v3) from CMIP6 for the comparable high-emissions Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5) scenario. For Greenland, we downscale the two versions of EC-Earth for the historical period 1991–2010 and for the scenario period 2081–2100. For Antarctica, the periods are 1971–2000 and 2071–2100, respectively. For the Greenland Ice Sheet, we find that the mean change in temperature is 5.9 ∘C when downscaling EC-Earth v2 and 6.8 ∘C when downscaling EC-Earth v3. Corresponding values for Antarctica are 4.1 ∘C for v2 and 4.8 ∘C for v3. The mean change in surface mass balance at the end of the century under these high-emissions scenarios is found to be −290 Gt yr−1 (v2) and −1640 Gt yr−1 (v3) for Greenland and 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3) for Antarctica. These distinct differences in temperature change and particularly surface mass balance change are a result of the higher equilibrium climate sensitivity in EC-Earth v3 (4.3 K) compared with 3.3 K in EC-Earth v2 and the differences in greenhouse gas concentrations between the RCP8.5 and the SSP5-8.5 scenarios.


2011 ◽  
Vol 5 (4) ◽  
pp. 1887-1920
Author(s):  
J. J. Day ◽  
J. L. Bamber ◽  
P. J. Valdes ◽  
J. Kohler

Abstract. General circulation models (GCMs) predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB) of Svalbard is also sensitive to changes in the position of the sea ice edge. To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km) regional climate model (RCM) was forced with a repeating cycle of sea surface temperatures (SSTs) and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.


2012 ◽  
Vol 4 (1) ◽  
pp. 31-35 ◽  
Author(s):  
R. S. W. van de Wal ◽  
W. Boot ◽  
C. J. P. P. Smeets ◽  
H. Snellen ◽  
M. R. van den Broeke ◽  
...  

Abstract. A 21-yr record is presented of surface mass balance measurements along the K-transect. The series covers the period 1990–2011. Data are available at eight sites along a transect over an altitude range of 380–1850 m at approximately 67° N in West Greenland. The surface mass balance gradient is on average 3.8 × 10−3 m w.e. m−1, and the mean equilibrium line altitude is 1553 m a.s.l. Only the lower three sites within 10 km of the margin up to an elevation of 700 m experience a significant increasing trend in the ablation over the entire period. Data are available at: doi:10.1594/PANGAEA.779181.


2021 ◽  
Vol 15 (2) ◽  
pp. 1131-1156
Author(s):  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz ◽  
Florian A. Ziemen ◽  
Christian B. Rodehacke ◽  
Clemens Schannwell

Abstract. A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.


2018 ◽  
Vol 12 (1) ◽  
pp. 271-286 ◽  
Author(s):  
Lucas Davaze ◽  
Antoine Rabatel ◽  
Yves Arnaud ◽  
Pascal Sirguey ◽  
Delphine Six ◽  
...  

Abstract. Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation–area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000–2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.


2008 ◽  
Vol 2 (2) ◽  
pp. 117-129 ◽  
Author(s):  
X. Fettweis ◽  
E. Hanna ◽  
H. Gallée ◽  
P. Huybrechts ◽  
M. Erpicum

Abstract. Results from a regional climate simulation (1970–2006) over the Greenland ice sheet (GrIS) reveals that more than 97% of the interannual variability of the modelled Surface Mass Balance (SMB) can be explained by the GrIS summer temperature anomaly and the GrIS annual precipitation anomaly. This multiple regression is then used to empirically estimate the GrIS SMB since 1900 from climatological time series. The projected SMB changes in the 21st century are investigated with the set of simulations performed with atmosphere-ocean general circulation models (AOGCMs) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). These estimates show that the high surface mass loss rates of recent years are not unprecedented in the GrIS history of the last hundred years. The minimum SMB rate seems to have occurred earlier in the 1930s and corresponds to a zero SMB rate. The AOGCMs project that the SMB rate of the 1930s would be common at the end of 2100. The temperature would be higher than in the 1930s but the increase of accumulation in the 21st century would partly offset the acceleration of surface melt due to the temperature increase. However, these assumptions are based on an empirical multiple regression only validated for recent/current climatic conditions, and the accuracy and time homogeneity of the data sets and AOGCM results used in these estimations constitute a large uncertainty.


2003 ◽  
Vol 37 ◽  
pp. 189-193 ◽  
Author(s):  
Guðefinna Aðalgeirsdóttir ◽  
G. Hilmar Gudmundsson ◽  
Helgi Björnsson

AbstractA non-linear regression model describing the mass-balance distribution of the whole Vatnajökull ice cap, Iceland, for the years 1992–2000 is presented. All available data from some 40 locations over this 9 year period were used to determine the parameters of the model. The regression model uses six adjustable parameters which all have a clear physical interpretation. They are the slope, direction and the height of the equilibrium-line altitude (ELA) plane, two altitude mass-balance gradients, and a maximum value of the surface mass balance. It is found that the temporal variation of the observed mass-balance distribution can be accurately described through annual shifts of the ELA. Annual shifts in ELA are on the order of 100 m, which is of the same magnitude as the change expected to be caused by the climate variation predicted during the next decades. A slight trend towards a more negative mass balance is detected during this 9 year period.


2012 ◽  
Vol 6 (1) ◽  
pp. 35-50 ◽  
Author(s):  
J. J. Day ◽  
J. L. Bamber ◽  
P. J. Valdes ◽  
J. Kohler

Abstract. The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.


2005 ◽  
Vol 51 (175) ◽  
pp. 561-572 ◽  
Author(s):  
M. Gerbaux ◽  
C. Genthon ◽  
P. Etchevers ◽  
C. Vincent ◽  
J.P. Dedieu

AbstractA new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mass-balance reconstructions for the period 1981–2004 are produced using meteorological reconstruction from the SAFRAN meteorological model for Glacier de Saint-Sorlin and Glacier d’Argentière, French Alps. Both glaciers lost mass at an accelerated rate in the last 23 years. The spatial distribution of precipitation within the model grid is adjusted using field mass-balance measurements. This is the only correction made to the SAFRAN meteorological input to the glacier model, which also includes surface atmospheric temperature, moisture, wind and all components of downward radiation. Independent data from satellite imagery and geodetic measurements are used for model validation. With this model, glacier sensitivity to climate change can be separately evaluated with respect to a full range of meteorological parameters, whereas simpler models, such as degree-day models, only account for temperature and precipitation. We provide results for both mass balance and equilibrium-line altitude (ELA) using a generic Alpine glacier. The sensitivity of the ELA to air temperature alone is found to be 125 m °C–1, or 160 m °C¯1 if concurrent (Stefan–Boltzmann) longwave radiation change is taken into account.


Sign in / Sign up

Export Citation Format

Share Document