scholarly journals Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

2008 ◽  
Vol 12 (1) ◽  
pp. 101-110 ◽  
Author(s):  
R. Quilbé ◽  
A. N. Rousseau ◽  
J.-S. Moquet ◽  
S. Savary ◽  
S. Ricard ◽  
...  

Abstract. Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada) and had two objectives: (i) to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii) to assess the effect of future land use evolution scenarios under climate change conditions (CC). To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 80's, a slight decrease in the beginning of the 90's and a steady state over the last ten years. Simulations showed strong correlations between land use evolution and water discharge at the watershed outlet. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification and sustainable development. Simulations led to a wide range of results depending on the climatologic models and gas emission scenarios considered, varying from a decrease to an increase of annual and monthly water discharge. In this context, the two land use scenarios induced opposite effects on water discharge and low flow sequences, especially during the growing season. However, due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another. Nevertheless, this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

2007 ◽  
Vol 4 (3) ◽  
pp. 1337-1367 ◽  
Author(s):  
R. Quilbé ◽  
A. N. Rousseau ◽  
J.-S. Moquet ◽  
S. Savary ◽  
S. Ricard ◽  
...  

Abstract. Watershed runoff is closely related to land use, but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada) and had two objectives: (i) to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii) to assess the effect of future land use evolution scenarios under climate change conditions (CC). To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 1980s, a slight decrease in the beginning of the 1990s and a steady state over the last ten years. Simulations based on thirty years of daily meteorological series showed strong correlations between land use evolution and water discharge at the watershed outlet, especially for summer and fall seasons. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification or sustainable development. Simulation results showed that CC would induce an increase of water discharge during winter and a decrease the rest of the year, while land use scenarios would have a more drastic effect, agriculture intensification counterbalancing the effect of CC during summer and fall. Due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another, but this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.


2019 ◽  
Vol 62 (6) ◽  
pp. 1541-1543
Author(s):  
Tiffany Messer ◽  
Kyle Douglas-Mankin ◽  
Natalie Nelson ◽  
James Randall Etheridge

HighlightsWe provide context and perspectives on articles in the Wetland Ecosystem Resilience collection.Insights gained on wetland resilience to sea-level rise and climate change, land use and drainage, and nutrients. Abstract. The objective of this article is to introduce a collection of articles that explore current research and scientific thought on wetland ecosystem resilience. The collection contains articles on wetland resilience to climate change, agricultural land use-driven change, and recreational land use, along with evaluations of wetland resilience through high-resolution monitoring and modeling tools. Wetland settings in the U.S. span tidal marshes and coastal plain non-riverine wetlands in North Carolina, prairie potholes in Iowa, Appalachian floodplain wetlands, and floating treatment wetlands in the Midwest. The studies in this collection found vertical accretion rates of 0.7 to 4.0 mm year-1 in a tidal marsh, a wide range of potential wetland hydroperiod responses to climate change, substantial decreases in inundation period, crop yield, and surface-water nitrate (but increases in phosphorus) in artificially drained potholes, and nitrate removal in carbon-amended floating treatment wetlands. Further work is needed to better understand how to design and enhance wetland systems in agricultural regions, better preserve wetland ecosystem services in areas affected by land use and climate change, and provide technical standards for the wide range of designs currently used for wetland treatment systems. Keywords: Agricultural wetlands, Resiliency, Temporal data, Treatment wetlands, Water chemistry, Water quality, Water treatment


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 176 ◽  
Author(s):  
Kevin Thellmann ◽  
Reza Golbon ◽  
Marc Cotter ◽  
Georg Cadisch ◽  
Folkard Asch

Land use and climate change exert pressure on ecosystems and threaten the sustainable supply of ecosystem services (ESS). In Southeast-Asia, the shift from swidden farming to permanent cash crop systems has led to a wide range of impacts on ESS. Our study area, the Nabanhe Reserve in Yunnan province (PR China), saw the loss of extensive forest areas and the expansion of rubber (Hevea brasiliensis Müll. Arg.) plantations. In this study, we model water yield and sediment export for a rubber-dominated watershed under multiple scenarios of land use and climate change in order to assess how both drivers influence the supply of these ESS. For this we use three stakeholder-validated land use scenarios, varying in their degree of rubber expansion and land management rules. As projected climate change varies remarkably between different climate models, we combined the land use scenarios with datasets of temperature and precipitation changes, derived from nine General Circulation Models (GCMs) of the Fifth Assessment Report of the IPCC (Intergovernmental Panel on Climate Change) in order to model water yield and sediment export with InVEST (Integrated Valuation of Ecosystem Services and Trade-offs). Simulation results show that the effect of land use and land management decisions on water yield in Nabanhe Reserve are relatively minor (4% difference in water yield between land use scenarios), when compared to the effects that future climate change will exert on water yield (up to 15% increase or 13% decrease in water yield compared to the baseline climate). Changes in sediment export were more sensitive to land use change (15% increase or 64% decrease) in comparison to the effects of climate change (up to 10% increase). We conclude that in the future, particularly dry years may have a more pronounced effect on the water balance as the higher potential evapotranspiration increases the probability for periods of water scarcity, especially in the dry season. The method we applied can easily be transferred to regions facing comparable land use situations, as InVEST and the IPCC data are freely available.


2020 ◽  
Author(s):  
María José González Molina ◽  
Haydee Ximena Vargas Mesa ◽  
Nicolás Vásquez Placencia

<p>Faced to reduced future water availability, associated with climate change variability and population growth, it becomes important to study the hydrological response under various modifications of crop patterns currently present in an agricultural basin in Chile. The focus of this research is to improve the future water resources management knowing the behavior of the hydrological cycle under meteorological forcings during the historical period 1985 to 2015.</p><p>We selected the Rapel River basin, in Central Chile, with a relevant agricultural activity and high water consumption in the study area.</p><p>VIC (Variable Infiltration Capacity) hydrological model, was calibrated considering base land use and historical records determined with the product CR2Met (www.cr2.cl/datos-productos-grillados/) for a grid with cells of 5 km by 5 km. For the near future (2030-2060) we proposed agricultural land use scenarios, considering a set of 40 crops that are representative of the area. The variation of the future forcings was considered according to the climate change scenario RCP 8.5 for four Global Climate Models (CCSM4, CSIRO, IPSAL, and MIROC).</p><p>Results show the variation in evapotranspiration demand and runoff, according to crop class and geographical ubication. An important variation of both flows is revealed, which is mainly related to the class of crop.  For this reason, the selection of crops determines a specific hydrological response, so the study of the change in land use is crucial. Based on the hydrologic response of each class of crop over the basin,  crop arrays were obtained and patterns are recommended for future scenarios. The arrays consider the optimal location of the crop, which reduces evapotranspiration demand and increases runoff. Also, changes in the percentage of the cultivated area of each crop class are recommended.</p>


2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


Author(s):  
Y Widodo ◽  
S Wahyuningsih ◽  
JS Utomo ◽  
A Subagio

Green revolution started at mid of twentieth century was the answer of anxiousness reminded by Malthusian that food scarcity problems in relation with population growth. In concurrence with exploitation of fossil fuel for agriculture mechanization as well as agrochemicals in the form of inorganic fertilizer and pesticide, green revolution by introducing high yielding varieties of cereals and grains was able to nourish the world population by increasing productivity. Indeed, from beginning of mechanization with fossil fuel based as advised by Rudolf Diesel then Arrhenius would be affected to the release of CO2 to the atmosphere and consequently exaggerating climate change as suffered by current and future generations. Under green revolution based on cereals and grains affected forest conversion into open agricultural land, because both commodities are sun-loving crops, which are hate to the shade. On the other hand, to slow the severity of climate change natural forest must be conserved tightly. Entering third millennium demand of food production with ecologically friendly is stronger. Hence, green revolution needs to be amended into greener perspectives. Thus, implementation of agro-forestry into wide range of agro-ecological zone is urgently innovated. Fortunately, shade tolerant of root crops has significant advantage to be developed under agro-forestry. Under shade of forest canopy at basal forest strata, root crops are able to sequester CO2 to be converted into carbohydrate and other compounds to provide food for the dweller. Back to nature is not only a slogan, with root crops under agro-forestry is a reality; fresh root up to 30 t ha-1 can be harvested yearly as the source of food and renewable fuel as well. This potential is very worthy to improve and greening the existing green revolution to be more sustainable.Int. J. Agril. Res. Innov. & Tech. 8 (1): 26-37, June, 2018


2018 ◽  
Vol 11 (11) ◽  
pp. 4537-4562 ◽  
Author(s):  
HyeJin Kim ◽  
Isabel M. D. Rosa ◽  
Rob Alkemade ◽  
Paul Leadley ◽  
George Hurtt ◽  
...  

Abstract. To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) – SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6 – to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.


Sign in / Sign up

Export Citation Format

Share Document