scholarly journals Can riparian vegetation shade mitigate the expected rise in stream temperatures during heat waves in a pre-alpine river?

Author(s):  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
David Leidinger ◽  
Herbert Formayer ◽  
Gerda Kalny

Abstract. The influence of expected changes in heat wave intensity during the 21st century on the temperatures of an pre-alpine river are simulated and the mitigating effects of riparian vegetation shade on the radiant and turbulent energy fluxes analysed. Minor stream water temperature increases are modelled within the first half of the century, but a more significant increase is predicted for the period 2071–2100. The magnitude of maximum, mean and minimum stream temperature rises for a 20 year return period heat event was estimated to be in the region of 3 °C. Additional riparian vegetation is not able to fully mitigate the expected temperature rise caused by climate change, but can reduce maximum, mean and minimum stream temperatures by 1 to 2° C. Removal of existing vegetation amplifies stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in yearly heat events.

2018 ◽  
Vol 22 (1) ◽  
pp. 437-461 ◽  
Author(s):  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
David Leidinger ◽  
Herbert Formayer ◽  
Gerda Kalny ◽  
...  

Abstract. Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 ∘C within the first half of the century. Until 2100, a more significant increase of around 3 ∘C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 ∘C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 ∘C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land–water interfaces and their ecological functioning in aquatic environments.


2012 ◽  
Vol 13 (3) ◽  
pp. 1052-1065 ◽  
Author(s):  
Manuel Punzet ◽  
Frank Voß ◽  
Anja Voß ◽  
Ellen Kynast ◽  
Ilona Bärlund

Abstract Stream water temperature is an important factor used in water quality modeling. To estimate monthly stream temperature on a global scale, a simple nonlinear regression model was developed. It was applied to stream temperatures recorded over a 36-yr period (1965–2001) at 1659 globally distributed gauging stations. Representative monthly air temperatures were obtained from the nearest grid cell included in the new global meteorological forcing dataset—the Water and Global Change (WATCH) Forcing Data. The regression model reproduced monthly stream temperatures with an efficiency of fit of 0.87. In addition, the regression model was applied for different climate zones (polar, snow, warm temperate arid, and equatorial climates) based on the Köppen–Geiger climate classification. For snow, warm temperate, and arid climates the efficiency of fit was larger than 0.82 including more than 1504 stations (90% of all records used). Analyses of heat-storage effects (seasonal hysteresis) did not show noticeable differences between the warming/cooling and global regression curves, respectively. The maximum difference between both limbs of the hysteresis curves was 1.6°C and thus neglected in the further analysis of the study. For validation purposes time series of stream temperatures for five individual river basins were computed applying the global regression equation. The accuracy of the global regression equation could be confirmed. About 77% of the predicted values differed by 3°C or less from measured stream temperatures. To examine the impact of climate change on stream water temperatures, gridded global monthly stream temperatures for the climate normal period (1961–90) were calculated as well as stream temperatures for the A2 and B1 climate change emission scenarios for the 2050s (2041–70). On average, there will be an increase of 1°–4°C in monthly stream temperature under the two climate scenarios. It was also found that in the months December, January, and February a noticeable warming predominantly occurs along the equatorial zone, while during the months June, July, and August large-scale or large increases can be observed in the northern and southern temperate zones. Consequently, projections of decay rates show a similar seasonal and spatial pattern as the corresponding stream temperatures. A regional increase up to ~25% could be observed. Thus, to ensure sufficient water quality for human purposes, but also for freshwater ecosystems, sustainable management strategies are required.


2000 ◽  
Vol 57 (S2) ◽  
pp. 30-39 ◽  
Author(s):  
Sherri L Johnson ◽  
Julia A Jones

Stream temperature controls the rates of many biotic and abiotic processes and is influenced by changes in streamside land use practices. We compiled historic stream temperature data and reestablished study sites in three small basins in the H.J. Andrews Experimental Forest in the western Cascades, Oregon, to reexamine the effects on and recovery of stream temperatures following removal of riparian vegetation. Maximum stream temperatures increased 7°C and occurred earlier in the summer after clear-cutting and burning in one basin and after debris flows and patch-cutting in another. Diurnal fluctuations in June increased from approximately 2 to 8°C. Stream temperatures in both basins gradually returned to preharvest levels after 15 years. The influence of the primary factor controlling stream temperatures, shortwave solar radiation, was amplified following removal of riparian vegetation, and conduction between stream water and nearby soils or substrates also appeared to be an important factor. Shifts in the timing of summer maxima and greater increases in early summer stream temperatures could impact sensitive stages of aquatic biota.


2019 ◽  
Vol 131 (1) ◽  
pp. 60
Author(s):  
Neville Nicholls

Short-term heat events (e.g. heat waves) and cold events cause more loss of life in Australia than any other weather or climate extreme. They are also, relative to other extremes, easier to predict, exhibit larger spatial scales and thus affect more people, and responses that can reduce the excess mortality associated with them are better understood and more readily actionable. There is evidence that the heat-event alert system introduced in Victoria in 2009, and subsequently enhanced, saves lives. Improving and further enhancing heat-alert systems will reduce the costs, both human and financial, associated with heat events. This paper discusses whether a cold alert system is required, along with the possible reasons why the excess mortality after a hot event is of shorter duration than after a cold event, and why winter mortality typically exceeds summer mortality even for similar temperatures.


2018 ◽  
Vol 23 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Stephane Hallegatte ◽  
Marianne Fay ◽  
Edward B. Barbier

AbstractBecause their assets and income represent such a small share of national wealth, the impacts of climate change on poor people, even if dramatic, will be largely invisible in aggregate economic statistics such as the Gross Domestic Product (GDP). Assessing and managing future impacts of climate change on poverty requires different metrics, and specific studies focusing on the vulnerability of poor people. This special issue provides a set of such studies, looking at the exposure and vulnerability of people living in poverty to shocks and stressors that are expected to increase in frequency or intensity due to climate change, such as floods, droughts, heat waves, and impacts on agricultural production and ecosystem services. This introduction summarizes their approach and findings, which support the idea that the link between poverty and climate vulnerability goes both ways: poverty is one major driver of people's vulnerability to climate-related shocks and stressors, and this vulnerability is keeping people in poverty. The paper concludes by identifying priorities for future research.


Agronomy ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 25 ◽  
Author(s):  
Tapan Pathak ◽  
Mahesh Maskey ◽  
Jeffery Dahlberg ◽  
Faith Kearns ◽  
Khaled Bali ◽  
...  

California is a global leader in the agricultural sector and produces more than 400 types of commodities. The state produces over a third of the country’s vegetables and two-thirds of its fruits and nuts. Despite being highly productive, current and future climate change poses many challenges to the agricultural sector. This paper provides a summary of the current state of knowledge on historical and future trends in climate and their impacts on California agriculture. We present a synthesis of climate change impacts on California agriculture in the context of: (1) historic trends and projected changes in temperature, precipitation, snowpack, heat waves, drought, and flood events; and (2) consequent impacts on crop yields, chill hours, pests and diseases, and agricultural vulnerability to climate risks. Finally, we highlight important findings and directions for future research and implementation. The detailed review presented in this paper provides sufficient evidence that the climate in California has changed significantly and is expected to continue changing in the future, and justifies the urgency and importance of enhancing the adaptive capacity of agriculture and reducing vulnerability to climate change. Since agriculture in California is very diverse and each crop responds to climate differently, climate adaptation research should be locally focused along with effective stakeholder engagement and systematic outreach efforts for effective adoption and implementation. The expected readership of this paper includes local stakeholders, researchers, state and national agencies, and international communities interested in learning about climate change and California’s agriculture.


Sign in / Sign up

Export Citation Format

Share Document