scholarly journals Hydrological threats for riparian wetlands of international importance – a global quantitative and qualitative analysis

2016 ◽  
Author(s):  
Christof Schneider ◽  
Martina Flörke ◽  
Lucia De Stefano ◽  
Jacob D. Petersen-Perlman

Abstract. Riparian wetlands have been reportedly disappearing at an accelerating rate. Their ecological integrity as well as their vital ecosystem services for mankind depend on regular inundation patterns of natural flow regimes. However, river hydrology has been altered worldwide. Dams cause less variable flow regimes and water abstractions decrease the amount of flow so that ecologically important flood pulses are often reduced. Given growing population pressure and projected climate change, immediate action is required. Adaptive dam management, sophisticated environmental flow provisions, water use efficiency enhancement, and improved flood management plans are necessary for a sustainable path into the future. Their implementation, however, is often a complex task. This paper aims at identifying hydrological threats for 93 Ramsar sites, many of which are located in transboundary basins. First, the WaterGAP3 modeling framework is used to quantitatively compare current and future modified flow regimes to natural flow conditions. Results show that current water resource management seriously impairs riparian wetland inundation at 29 % of the analyzed sites. Further 8 % experience significantly reduced flood pulses. In the future, Eastern Europe, Western Asia as well as central South America could be hotspots of further flow modifications due to climate change. Second, impacts on riparian wetland flooding are qualitatively assessed. New dam initiatives in the upstream areas were compiled to estimate the potential for future flow modifications. They currently take place in one third of the upstream areas and are likely to impair especially wetlands located in South America, Africa, Asia and the Balkan Peninsula. Further qualitative results address the capacity to act for each site by evaluating whether upstream water resource availability and the existing legal and institutional framework could support the implementation of conservation measures.

2017 ◽  
Vol 21 (6) ◽  
pp. 2799-2815 ◽  
Author(s):  
Christof Schneider ◽  
Martina Flörke ◽  
Lucia De Stefano ◽  
Jacob D. Petersen-Perlman

Abstract. Riparian wetlands have been disappearing at an accelerating rate. Their ecological integrity as well as their vital ecosystem services for humankind depend on regular patterns of inundation and drying provided by natural flow regimes. However, river hydrology has been altered worldwide. Dams cause less variable flow regimes and water abstractions decrease the amount of flow so that ecologically important flood pulses are often reduced. Given growing population pressure and projected climate change, immediate action is required. However, the implementation of counteractive measures is often a complex task. This study develops a screening tool for assessing hydrological threats to riparian wetlands on global scales. The approach is exemplified on 93 Ramsar sites, many of which are located in transboundary basins. First, the WaterGAP3 hydrological modeling framework is used to quantitatively compare current and future modified flow regimes to reference flow conditions. In our simulations current water resource management seriously impairs riparian wetland inundation at 29 % of the analyzed sites. A further 8 % experience significantly reduced flood pulses. In the future, eastern Europe, western Asia, as well as central South America could be hotspots of further flow modifications due to climate change. Second, a qualitative analysis of the 93 sites determined potential impact on overbank flows resulting from planned or proposed dam construction projects. They take place in one-third of the upstream areas and are likely to impair especially wetlands located in South America, Asia, and the Balkan Peninsula. Third, based on the existing legal/institutional framework and water resource availability upstream, further qualitative analysis evaluated the capacity to preserve overbank flows given future streamflow changes due to dam construction and climate change. Results indicate hotspots of vulnerability exist, especially in northern Africa and the Persian Gulf.


2013 ◽  
Vol 17 (1) ◽  
pp. 325-339 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year) and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises). In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be predominantly altered in the Mediterranean but also in the Northern climates. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone.


2011 ◽  
Vol 62 (9) ◽  
pp. 1099 ◽  
Author(s):  
Stephen R. Balcombe ◽  
Fran Sheldon ◽  
Samantha J. Capon ◽  
Nick R. Bond ◽  
Wade L. Hadwen ◽  
...  

Many aquatic ecosystems have been severely degraded by water-resource development affecting flow regimes and biological connectivity. Freshwater fish have been particularly affected by these changes and climate change will place further stress on them. The Murray–Darling Basin (MDB), Australia, represents a highly affected aquatic system with dramatically modified flow regimes. This has impaired the health of its rivers, and potentially limited the adaptive capacity of its biota to respond to a changing climate. Here, we present our predictions of the potential impacts of climate change on 18 native fish species across their distributional ranges against the back-drop of past and continuing water-resource development (WRD). Because most of these species are found across a wide range of geographical and hydrological settings, we classified the MDB into 10 regions to account for likely variation in climate-change effects, on the basis of latitude, elevation and WRD. Cold water-tolerant species will be under greater stress than are warm water-tolerant species. In some regions, the negative impacts on exotic fish such as trout are likely to improve current conditions for native species. Because the impacts of climate change on any given species are likely to vary from region to region, regional fish assemblages will also be differentially affected. The most affected region is likely to occur in the highly disturbed Lower Murray River region, whereas the dryland rivers that are less affected in the northern MDB are likely to remain largely unchanged. Although climate change is a current and future threat to the MDB fish fauna, the continued over-regulation of water resources will place as much, if not more, stress on the remnant fish species.


2018 ◽  
Vol 19 (3) ◽  
pp. 499-515 ◽  
Author(s):  
Tian Zhou ◽  
Nathalie Voisin ◽  
Guoyong Leng ◽  
Maoyi Huang ◽  
Ian Kraucunas

Abstract Water management activities modify water fluxes at the land surface and affect water resources in space and time. Conventional understanding on the role of water management suggests that regulated river flow would be less sensitive to future climate conditions than natural flow in terms of the absolute changes in mean monthly flows. In this study the authors evaluate such an assumption by redefining sensitivity as the difference in the emergence of changes in cumulative distribution functions (CDFs) of future regulated and natural flows in response to climate change with respect to their respective historical regulated and natural flow conditions. The emergence of changes (shift in CDFs) in natural and regulated river flow regimes across the western United States from simulations driven by multiple climate models and scenarios were compared. Forty percent of Hydrologic Unit Codes 4 (HUC4s) over the western United States might perceive such a shift in seasonal regulated flow earlier than they would have seen in natural flow conditions, although the absolute change is smaller than that under natural conditions. About 10% of the regulated HUC4s see a delay and are therefore less sensitive to climate change. In the spring (MAM), the overall sensitivity tends to decrease as the level of river regulation increases, as expected. However, in the winter (DJF) and summer (JJA) seasons, the sensitivity tends to increase with increasing levels of regulation, with changes in smaller magnitudes than under natural conditions. The results could inform integrated assessment studies when designing adaptation strategies in the water–energy–food nexus.


2007 ◽  
Vol 11 (3) ◽  
pp. 1115-1126 ◽  
Author(s):  
H. J. Fowler ◽  
C. G. Kilsby ◽  
J. Stunell

Abstract. Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2) scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ), a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.


2012 ◽  
Vol 17 (3) ◽  
pp. 368-372 ◽  
Author(s):  
Sjak Smulders

AbstractHow sustainable is the growth pattern of a national economy? At first, answering this question seems almost impossible, since this would require knowing what happens and what can happen in the future. One needs to assess whether the investments we make today will be sufficient to provide future generations with the means to cope with imminent disasters like the exhaustion of minerals and vital resources, or other problems like increasing population pressure and climate change. One also needs to assess which combination of investment leads to the desired result. If entrepreneurs, managers and households already have problems in finding out what is the best mix of investment for them in their micro-environment, how can we answer the aggregate question that needs so much more information?


Author(s):  
Mansour Almazroui ◽  
Moetasim Ashfaq ◽  
M. Nazrul Islam ◽  
Irfan Ur Rashid ◽  
Shahzad Kamil ◽  
...  

AbstractWe evaluate the performance of a large ensemble of Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) over South America for a recent past reference period and examine their projections of twenty-first century precipitation and temperature changes. The future changes are computed for two time slices (2040–2059 and 2080–2099) relative to the reference period (1995–2014) under four Shared Socioeconomic Pathways (SSPs, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The CMIP6 GCMs successfully capture the main climate characteristics across South America. However, they exhibit varying skill in the spatiotemporal distribution of precipitation and temperature at the sub-regional scale, particularly over high latitudes and altitudes. Future precipitation exhibits a decrease over the east of the northern Andes in tropical South America and the southern Andes in Chile and Amazonia, and an increase over southeastern South America and the northern Andes—a result generally consistent with earlier CMIP (3 and 5) projections. However, most of these changes remain within the range of variability of the reference period. In contrast, temperature increases are robust in terms of magnitude even under the SSP1–2.6. Future changes mostly progress monotonically from the weakest to the strongest forcing scenario, and from the mid-century to late-century projection period. There is an increase in the seasonality of the intra-annual precipitation distribution, as the wetter part of the year contributes relatively more to the annual total. Furthermore, an increasingly heavy-tailed precipitation distribution and a rightward shifted temperature distribution provide strong indications of a more intense hydrological cycle as greenhouse gas emissions increase. The relative distance of an individual GCM from the ensemble mean does not substantially vary across different scenarios. We found no clear systematic linkage between model spread about the mean in the reference period and the magnitude of simulated sub-regional climate change in the future period. Overall, these results could be useful for regional climate change impact assessments across South America.


2021 ◽  
Author(s):  
Chantelle Burton ◽  
Douglas Kelley ◽  
Chris Jones ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
...  

<p>Unprecedented fire events in recent years are leading to a demand for improved understanding of how climate change is already affecting fires, and how this could change in the future. Increased fire activity in South America is one of the most concerning of all the recent events, given the potential impacts on local health and the global climate from loss of large carbon stores under future environmental change. However, due to the complexity of interactions and feedbacks, and lack of complete representation of fire biogeochemistry in many climate models, there is currently low agreement on whether climate change will cause fires to become more or less frequent in the future, and what impact this will have on ecosystems. Here we use the latest climate simulations from the UK Earth System Model UKESM1 to understand feedbacks in fire, dynamic vegetation, and terrestrial carbon stores using the fire-enabled land surface model JULES-INFERNO, taking into account future scenarios of change in emissions and land use. Based on evaluation of the modelling framework performance for the present day, we address the specific policy-relevant question: how much fire-induced carbon loss will there be over South America at different global warming levels in the future? We find that burned area and fire emissions are projected to increase in the future due to hotter and drier conditions, which leads to large reductions in carbon storage especially when combined with increasing land-use conversion. The model simulates a 38% loss of carbon at 4°C under the highest emission scenario, which could be reduced to 8% if temperature rise is limited to 1.5°C. Our results provide a critical assessment of ecosystem resilience under future climate change, and could inform the way fire and land-use is managed in the future to reduce the most deleterious impacts of climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document