scholarly journals Riparian evapotranspiration shapes stream flow dynamics and water budgets in a Mediterranean catchment

2018 ◽  
Author(s):  
Anna Lupon ◽  
José L. J. Ledesma ◽  
Susana Bernal

Abstract. Riparian trees can regulate stream flow dynamics and water budgets by taking up large amounts of water from both soil and groundwater compartments. However, their role has not been fully recognized in the hydrologic literature and the catchment modeling community. In this study, we explored the influence of riparian evapotranspiration (ET) on stream flow by simulating daily stream exports from three nested Mediterranean sub-catchments, both including and excluding the riparian compartment in the structure of the PERSiST rainfall-runoff model. The model goodness of fit significantly improved with the inclusion of the riparian compartment, especially during the vegetative period when, according to our simulations, riparian ET reduced mean daily stream flow by 26 %. Moreover, sensitivity analyses suggested that riparian ET was a significant hydrological process contributing to stream flow recession in summer. At the catchment scale, simulated riparian ET accounted for 7 % of annual water depletions, its contribution being especially noticeable during summer (8–19 %). Simulations considering future climate change scenarios suggest that longer vegetative periods would result in higher contribution of riparian ET to annual water budgets. Annual increases in riparian ET ranged between 2 and 13 % from the most conservative to the most extreme drought scenarios. Overall, our results highlight that a good assessment of riparian ET is essential for understanding catchment hydrology and stream flow dynamics in Mediterranean regions. Thus, the inclusion of the riparian compartment in hydrological models is strongly recommended in order to establish proper management strategies in water-limited regions.

2018 ◽  
Vol 22 (7) ◽  
pp. 4033-4045 ◽  
Author(s):  
Anna Lupon ◽  
José L. J. Ledesma ◽  
Susana Bernal

Abstract. Riparian trees can regulate streamflow dynamics and water budgets by taking up large amounts of water from both soil and groundwater compartments. However, their role has not been fully recognized in the hydrologic literature and the catchment modeling community. In this study, we explored the influence of riparian evapotranspiration (ET) on streamflow by simulating daily stream water exports from three nested Mediterranean catchments, both including and excluding the riparian compartment in the structure of the PERSiST (Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) rainfall–runoff model. The model goodness of fit for the calibration period (September 2010–August 2012) significantly improved with the inclusion of the riparian compartment, especially during the vegetative period, when according to our simulations, the riparian zone significantly reduced the overestimation of mean daily streamflow (from 53 % to 27 %). At the catchment scale, simulated riparian ET accounted for 5.5 % to 8.4 % of annual water depletions over a 20-year reference period (1981–2000), and its contribution was especially noticeable during summer (from 8 % to 26 %). Simulations considering climate change scenarios suggest large increases in riparian ET during the dormant period (from 19 % to 46 %) but only small increases (from 1 % to 2 %) in its contribution to annual water budgets. Overall, our results highlight that a good assessment of riparian ET is essential for understanding catchment hydrology and streamflow dynamics in Mediterranean regions. Thus, the inclusion of the riparian compartment in hydrological models is strongly recommended in order to establish proper management strategies in water-limited regions.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


2021 ◽  
Vol 9 (4) ◽  
pp. 862
Author(s):  
Vittoria Catara ◽  
Jaime Cubero ◽  
Joël F. Pothier ◽  
Eran Bosis ◽  
Claude Bragard ◽  
...  

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Sign in / Sign up

Export Citation Format

Share Document