scholarly journals Wavelet and index methods for the identification of pool–riffle sequences

2018 ◽  
Author(s):  
Mounir Mahdade ◽  
Nicolas Le Moine ◽  
Roger Moussa

Abstract. The accuracy of hydraulic models depends on the quality of the bathymetric data they are based on, whatever the scale at which they are applied (e.g., 2D or 3D reach-scale modeling for local flood studies or 1D modeling for network-scale flood routing). The along-stream (longitudinal) and cross-sectional geometry of natural rivers is known to vary at the scale of the hydrographic network (e.g., generally decreasing slope, increasing width, etc.), allowing parameterizations of main cross-sectional parameters with proxy such as drainage area or a reference discharge quantile (an approach coined downstream hydraulic geometry, DHG). However, higher-frequency morphological variability is known to occur for many stream types, associated with varying flow conditions along a given reach: alternate bars, pool-riffle sequences, meanders, etc. To better take this high-frequency variability in bedforms into account in hydraulic models, a first step is to design robust methods to characterize the scales at which it occurs. In this paper, we propose and benchmark several methods to identify bedform sequences in pool-riffle morphology, for six small French rivers: the first one called the index method, based on three morphological and hydraulic descriptors; the second one called wavelet ridge extraction, performed on the continuous wavelet transform (CWT) of bed elevation. Finally, these new methods are compared with the bedform differencing technique (BDT, O’Neill and Abrahams (1984)), compared by computing a score that gives a percentage of agreement along the total surveyed length and by calculating the number of bedforms and the pool spacings for each method. The three methods were found to give similar results on average for wavelength estimation, with agreement from 64% to 84% and a similar number of bedforms identified. The filter-like behavior of the wavelet ridge analysis tends to give more robust results for the estimation of mean bedform amplitude, which varies from 0.30 to 0.81 with an SNR (signal-to-noise ratio) from 2.68 to 7.91. Otherwise, BDT gives higher mean bedform amplitude but lower SNR values from 0.85 to 1.73.

2020 ◽  
Vol 24 (7) ◽  
pp. 3513-3537
Author(s):  
Mounir Mahdade ◽  
Nicolas Le Moine ◽  
Roger Moussa ◽  
Oldrich Navratil ◽  
Pierre Ribstein

Abstract. The accuracy of hydraulic models depends on the quality of the bathymetric data they are based on, whatever the scale at which they are applied. The along-stream (longitudinal) and cross-sectional geometry of natural rivers is known to vary at the scale of the hydrographic network (e.g., generally decreasing slope, increasing width in the downstream direction), allowing parameterizations of main cross-sectional parameters with large-scale proxies such as drainage area or bankfull discharge (an approach coined downstream hydraulic geometry, DHG). However, higher-frequency morphological variability (i.e., at river reach scale) is known to occur for many stream types, associated with varying flow conditions along a given reach, such as the alternate bars or the pool–riffle sequences and meanders. To consider this high-frequency variability of the geometry in the hydraulic models, a first step is to design robust methods to characterize the scales at which it occurs. In this paper, we introduce new wavelet analysis tools in the field of geomorphic analysis (namely, wavelet ridge extraction) to identify the pseudo-periodicity of alternating morphological units from a general point of view (focusing on pool–riffle sequences) for six small French rivers. This analysis can be performed on a single variable (univariate case) but also on multiple variables (multivariate case). In this study, we choose a set of four variables describing the flow degrees of freedom: velocity, hydraulic radius, bed shear stress, and a planform descriptor that quantifies the local deviation of the channel from its mean direction. Finally, this method is compared with the bedform differencing technique (BDT), by computing the mean, median, and standard deviation of their longitudinal spacings. The two methods show agreement in the estimation of the wavelength in all reaches except one. The method aims to extract a pseudo-periodicity of the alternating bedforms that allow objective identification of morphological units in a continuous approach with the maintenance of correlations between variables (i.e., at many station hydraulic geometry, AMHG) without the need to define a prior threshold for each variable to characterize the transition from one unit to another.


Author(s):  
Sabihe Amini ◽  
Fahimeh Hajiabolhassan ◽  
Jamileh Fatahi ◽  
Shohreh Jalaie ◽  
Mohammad Hosein Nilforoush

Background and Aim: Migraine is a relatively common neurovascular disease. Audiology studies have shown some ways of influencing migraine by the auditory pathways from cochlea to the auditory cortex. Considering that one of the most important functions of the central auditory system is speech perception in challenging conditions, the purpose of this study was to evaluate the ability to understand speech in noise in migraineurs without aura, and compare it with normal subjects.Methods: In this cross-sectional study, 30 migraineurs without aura aged 17 to 41 years (mean=31.9, SD=6.89) and 30 normal individuals who were matched for age and sex with the migraine group were evaluated by quick speech-in-noise test (Q-SIN). The correlation between duration of the disease and the frequency of attacks per month and signal-to-noise ratio (SNR) loss, as well as the role of headache severity on the scores were assessed.Results: In Q-SIN test, the mean SNR loss in migraineurs without aura was greater than that in controls (p<0.05). But this ability did not differ between males and females (p>0.05). There was no correlation between the duration of migraine, frequency of attacks per month and the severity of headache with SNR loss (p>0.05).Conclusion: Migraineurs without aura sometimes have difficulties in speech perception in noise which is not affected by duration of disease, its frequency and the severity of the attacks.


2020 ◽  
Author(s):  
O. Vershinina ◽  
M. Ivanchenko ◽  
M.G. Bacalini ◽  
A. Zaikin ◽  
C. Franceschi

ABSTRACTDNA methylation variability arises due to concurrent genetic and environmental influences. Each of them is a mixture of regular and noisy sources, whose relative contribution has not been satisfactorily understood yet. We conduct a systematic assessment of the age-dependent methylation by the signal-to-noise ratio and identify a wealth of “deterministic” CpG probes (about 90%), whose methylation variability likely originates due to genetic and general environmental factors. The remaining 10% of “stochastic” CpG probes are arguably governed by the biological noise or incidental environmental factors. Investigating the mathematical functional relationship between methylation levels and variability, we find that in about 90% of the age-associated differentially methylated positions, the variability changes as the square of the methylation level, whereas in the most of the remaining cases the dependence is linear. Furthermore, we demonstrate that the methylation level itself in more than 15% cases varies nonlinearly with age (according to the power law), in contrast to the previously assumed linear changes. Our findings present ample evidence of the ubiquity of strong DNA methylation regulation, resulting in the individual age-dependent and nonlinear methylation trajectories, whose divergence explains the cross-sectional variability. It may also serve a basis for constructing novel nonlinear epigenetic clocks.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Junwei Zhou ◽  
Weimin Bao ◽  
Geoffrey R. Tick ◽  
Hamed Moftakhari ◽  
Yu Li ◽  
...  

Abstract It has been observed in literature that for unsteady flow conditions the one-to-one relationships between flow depth, cross-sectional averaged velocity, and frictional resistance as determined from steady uniform flow cases may not be appropriate for these more complex flow systems. Thus, a general friction resistance formula needs to be modified through the addition of new descriptive terms to account for flow unsteadiness, in order to eliminate errors due to uniform and steady-flow assumptions. An extended Chezy formula incorporating both time and space partial derivatives of hydraulic parameters was developed using dimensional analysis to investigate the relationship between flow unsteadiness and friction resistance. Results show that the proposed formula performs better than the traditional Chezy formula for simulating real hydrograph cases whereby both formula coefficients are individually identified for each flood event and coefficients are predetermined using other flood events as calibration cases. Although the extended Chezy formula as well as the original Chezy formula perform worse with the increasing degree of flow unsteadiness, its results are less dramatically affected by unsteadiness intensity, thereby improving estimations of flood routing. As a result, it tends to perform much better than traditional Chezy formula for severe flood events. Under more complex conditions whereby peak flooding events may occur predominantly under unsteady flow, the extended Chezy model may provide as a valuable tool for researchers, practitioners, and water managers for assessing and predicting impacts for flooding and for the development of more appropriate mitigation strategies and more accurate risk assessments.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1429-1439
Author(s):  
Ziwei Zhang ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Hongfei Kan ◽  
Juan Wen

When low-resolution face images are used for face recognition, the model accuracy is substantially decreased. How to recover high-resolution face features from low-resolution images precisely and efficiently is an essential subtask in face recognition. In this study, we introduce shuffle block SRGAN, a new image super-resolution network inspired by the SRGAN structure. By replacing the residual blocks with shuffle blocks, we can achieve efficient super-resolution reconstruction. Furthermore, by considering the generated image quality in the loss function, we can obtain more realistic super-resolution images. We train and test SB-SRGAN in three public face image datasets and use transfer learning strategy during the training process. The experimental results show that shuffle block SRGAN can achieve desirable image super-resolution performance with respect to visual effect as well as the peak signal-to-noise ratio and structure similarity index method metrics, compared with the performance attained by the other chosen deep-leaning models.


2016 ◽  
Vol 821 ◽  
pp. 183-190
Author(s):  
Jan Brůha ◽  
Drahomír Rychecký

Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.


Author(s):  
Suping Wen ◽  
Wenbo Wang ◽  
Zhixuan Zhang

This paper presents a study of cross-sectional parameters and optimal drag reduction performance specifically for drag reduction in rotating microgroove applications. Rotating triangular microgrooves with nine asymmetrical and symmetrical cross-sections were numerically studied. In addition, a representative symmetrical rotating microgroove was experimentally tested. Positive asymmetrical microgrooves (including symmetrical microgrooves) were found to be sensitive to rotating Reynolds numbers and produced more significant drag reduction. Compared with a dimensioned asymmetry variable and other dimensionless parameters, the dimensionless asymmetry variable i+ could be used to describe drag reduction performance, which captured both the influence of microgroove cross-sectional asymmetry and turbulence intensity. A maximum drag reduction of up to 8.9% was obtained at 9.2 i+. With the exception of the torque, the velocity shift obtained from dimensionless velocity profiles could also be used to predict drag reduction performance, which has the potential for wider and more comprehensive application for any drag reduction technology.


1979 ◽  
Vol 49 (9) ◽  
pp. 540-542 ◽  
Author(s):  
J.J. Hebert ◽  
E.K. Boylston ◽  
J.I. Wadsworth

Sign in / Sign up

Export Citation Format

Share Document