scholarly journals Evaluating robustness of dynamic reservoir management under diverse climatic uncertainties: Application to the Boryeong Reservoir in South Korea

2019 ◽  
Author(s):  
Kuk-Hyun Ahn ◽  
Young-Il Moon

Abstract. The implications of forecast-based reservoir operation have been considered to be innovative approaches to water management. Despite the advantages of forecast-based operations, climate-related uncertainty may discourage the utilization of forecast-based reservoir operation in water resources management. To mitigate this concern, a systematic evaluation proves helpful. This study presents an evaluation framework for reservoir management under a variety of potential climate conditions. In particular, this study uses Monte Carlo simulations to quantify the robustness of the forecast-based operation in a scenario of degraded ability of forecast skill, and demonstrates a new performance metric for robustness. This framework is described in a case study for a water supply facility in South Korea. To illustrate the framework, this study also proposes dynamic reservoir operation rules for our case study, utilizing seasonal climate information and a real-option instrument from an interconnected water system. Results provide system robustness evaluated over a wide range of defined uncertainties related to climate change. Results also suggest that the dynamic operation management adopted in this study can substantially improve reservoir performance for future climates compared to current operation management. This analysis may serve as a useful guideline to adopt dynamic management of reservoir operation for water supply systems in South Korea and other regions.

2021 ◽  
pp. 1-12
Author(s):  
José Almir Cirilo ◽  
Alfredo Ribeiro Neto ◽  
Nyadja Menezes Rodrigues Ramos ◽  
Carla Fernanda Fortunato ◽  
Júlia Daniele Silva de Souza ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2564 ◽  
Author(s):  
Anderson Passos de Aragão ◽  
Patrícia Teixeira Leite Asano ◽  
Ricardo de Andrade Lira Rabêlo

The Hydrothermal Coordination problem consists of determining an operation policy for hydroelectric and thermoelectric plants within a given planning horizon. In systems with a predominance of hydraulic generation, the operation policy to be adopted should specify the operation of hydroelectric plants, so that hydroelectric resources are used economically and reliably. This work proposes the implementation of reservoir operation rules, using inter-basin water transfer through an optimization model based on Network Flow and Particle Swarm Optimization (PSO). The proposed algorithm aims to obtain an optimized operation policy of power generation reservoirs and consequently to maximize the hydroelectric benefits of the hydrothermal generation system, to reduce the use of thermoelectric plants, the importation and/or energy deficit and to reduce the cost associated with meeting the demand and reduce CO2 emissions from combustion of fossil fuels used by thermoelectric plants. In order to illustrate the efficiency and effectiveness of the proposed approach, it was evaluated by optimizing two case studies using a system with four hydroelectric plants. The first case study does not consider transfer and water and the second case study uses water transfer between rivers. The obtained results illustrate that the proposed model allowed to maximize the hydroelectric resources of a hydrothermal generation system with economy and reliability.


2017 ◽  
Vol 18 (1) ◽  
pp. 214-221
Author(s):  
K. L. Lam ◽  
P. A. Lant ◽  
S. J. Kenway

Abstract During the Millennium Drought in Australia, a wide range of supply-side and demand-side water management strategies were adopted in major southeast Australian cities. This study undertakes a time-series quantification (2001–2014) and comparative analysis of the energy use of the urban water supply systems and sewage systems in Melbourne and Sydney before, during and after the drought, and evaluates the energy implications of the drought and the implemented strategies. In addition, the energy implications of residential water use in Melbourne are estimated. The research highlights that large-scale adoption of water conservation strategies can have different impacts on energy use in different parts of the urban water cycle. In Melbourne, the per capita water-related energy use reduction in households related to showering and clothes-washing alone (46% reduction, 580 kWhth/p/yr) was far more substantial than that in the water supply system (32% reduction, 18 kWhth/p/yr). This historical case also demonstrates the importance of balancing supply- and demand-side strategies in managing long-term water security and related energy use. The significant energy saving in water supply systems and households from water conservation can offset the additional energy use from operating energy-intensive supply options such as inter-basin water transfers and seawater desalination during dry years.


Water ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 344 ◽  
Author(s):  
Irene Samora ◽  
Pedro Manso ◽  
Mário Franca ◽  
Anton Schleiss ◽  
Helena Ramos

2021 ◽  
Vol 308 ◽  
pp. 01010
Author(s):  
Shen Yizhi ◽  
Wei Minrui ◽  
Hou Bowen

Due to the accelerated industrial and urbanization development, climate change, and increasing populations and life quality expectations, the issue of drinking water shortage has raised much public awareness. The desalination system has been widely applied to accommodate the growing demand for clean water resources despite the continuous concerns about its relatively higher energy consumption and environmental footprints. This research conducted a case study in the Tampa Bay Regional Surface Water Treatment Plant and Tampa Bay Seawater Desalination Plant in Florida, U.S. It analysed the performance and environmental impacts of conventional and desalination water supply systems on three sides: energy consumption, carbon footprint, and solid waste. Potential negative effects of both water supply systems are generally associated with surface water ecology, groundwater aquifers, coastal environment, and marine organisms. Various environmental impact mitigation plans have been proposed to prevent or restore the detriments caused by carbon dioxide emissions, plant construction, and concentrated brine discharge. Due to the deficiency in freshwater resources, desalination technology is more promising through proper regulations and regional sustainable development.


2009 ◽  
Vol 2 (1-3) ◽  
pp. 24-29 ◽  
Author(s):  
B. Machado ◽  
T. Carvalho ◽  
C. Cupido ◽  
M.C. Almeida ◽  
H. Alegre

Author(s):  
Sarka Krocova ◽  
Karla Barcova

Water management systems in industrial facilities, industrial zones, hospitals and other internal water systems relatively frequently fail to meet the intended purpose for which they were built when an extraordinary event occurs. They may even pose a safety hazard. The causes of this condition may be of internal or external origin. Given that internal water supply systems of large premises always have a multipurpose character, i.e. to provide enough drinking water for drinking and sanitation purposes and also as a source of fire water for the fire safety of buildings, they must meet a wide range of hydraulic conditions and technical-operational capabilities. By what means and methods it is possible to achieve the desired state in economically-acceptable dimensions, while maintaining all the necessary hydraulic capabilities of the supply points of drinking and fire water, is briefly described in this article.


Sign in / Sign up

Export Citation Format

Share Document