scholarly journals A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty

2017 ◽  
Vol 21 (3) ◽  
pp. 1769-1790 ◽  
Author(s):  
Matthias Zink ◽  
Rohini Kumar ◽  
Matthias Cuntz ◽  
Luis Samaniego

Abstract. Long-term, high-resolution data about hydrologic fluxes and states are needed for many hydrological applications. Because continuous large-scale observations of such variables are not feasible, hydrologic or land surface models are applied to derive them. This study aims to analyze and provide a consistent high-resolution dataset of land surface variables over Germany, accounting for uncertainties caused by equifinal model parameters. The mesoscale Hydrological Model (mHM) is employed to derive an ensemble (100 members) of evapotranspiration, groundwater recharge, soil moisture, and runoff generated at high spatial and temporal resolutions (4 km and daily, respectively) for the period 1951–2010. The model is cross-evaluated against the observed daily streamflow in 222 basins, which are not used for model calibration. The mean (standard deviation) of the ensemble median Nash–Sutcliffe efficiency estimated for these basins is 0.68 (0.09) for daily streamflow simulations. The modeled evapotranspiration and soil moisture reasonably represent the observations from eddy covariance stations. Our analysis indicates the lowest parametric uncertainty for evapotranspiration, and the largest is observed for groundwater recharge. The uncertainty of the hydrologic variables varies over the course of a year, with the exception of evapotranspiration, which remains almost constant. This study emphasizes the role of accounting for the parametric uncertainty in model-derived hydrological datasets.

2016 ◽  
Author(s):  
Matthias Zink ◽  
Rohini Kumar ◽  
Matthias Cuntz ◽  
Luis Samaniego

Abstract. Long term, high-resolution data about hydrologic fluxes and states are needed for many hydrological applications. Because continuous large-scale observations of such variables are not feasible, hydrologic or land surface models are applied to derive them. This study aims to analyze and provide a consistent high-resolution dataset of land surface variables over Germany, accounting for uncertainties caused by equifinal model parameters. The mesoscale Hydrological Model (mHM) is employed to derive an ensemble (100 members) of evapotranspiration, groundwater recharge, soil moisture and generated runoff at high spatial and temporal resolutions (4 km and daily, respectively) for the period 1951–2010. The model is cross-evaluated against the observed runoff in 222 catchments, which are not used for model calibration. The mean (standard deviation) of the ensemble median NSE estimated for these catchments is 0.68 (0.09) for daily discharge simulations. The modeled evapotranspiration and soil moisture reasonably represent the observations from eddy covariance stations. Our analysis indicates the lowest parametric uncertainty for evapotranspiration, and the largest is observed for groundwater recharge. The uncertainty of the hydrologic variables varies over the course of a year, with the exception of evapotranspiration, which remains almost constant. This study emphasizes the role of accounting for the parametric uncertainty in model-derived hydrological datasets.


2018 ◽  
Vol 11 (1) ◽  
pp. 453-466
Author(s):  
Aurélien Quiquet ◽  
Didier M. Roche ◽  
Christophe Dumas ◽  
Didier Paillard

Abstract. This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km  ×  40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.


2017 ◽  
Author(s):  
Aurélien Quiquet ◽  
Didier M. Roche ◽  
Christophe Dumas ◽  
Didier Paillard

Abstract. In this paper, we present the inclusion of an online dynamical downscaling of heat and moisture within the model of intermediate complexity iLOVECLIM v1.1. We describe the followed methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is non grid-specific and conserves energy and moisture. We show that we are able to generate a high resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Whilst the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature includes ice sheet model coupling and high-resolution land surface model.


2012 ◽  
Vol 9 (2) ◽  
pp. 2283-2319 ◽  
Author(s):  
V. Maggioni ◽  
E. N. Anagnostou ◽  
R. H. Reichle

Abstract. A sensitivity analysis is conducted to investigate the contribution of rainfall forcing relative to the model uncertainty in the prediction of soil moisture by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. This study depicts different sources of uncertainty, namely, errors in the model input (i.e., rainfall estimates from satellite remote sensing observations) and errors in the land surface model itself. Specifically, rainfall-forcing uncertainty is introduced using a stochastic error model that generates reference-like ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters using the generalized likelihood uncertainty estimation (GLUE) technique or by adding randomly generated noise to the model prognostic variables. While the first method only addresses parametric uncertainty, the second one addresses both structural and parametric uncertainty. Despite this, a reasonable spread in soil moisture is achieved with relatively few parameter perturbations through GLUE, whereas the same ensemble width requires stronger prognostic perturbations with the standard random perturbation method. The probability of encapsulating the reference soil moisture simulation increases when the rainfall forcing uncertainty and the model uncertainty approaches are combined (compared with using only rainfall uncertainty). This improvement is more significant when using the GLUE technique to perturb CLSM parameters as opposed to perturbing the CLSM prognostic variables.


2020 ◽  
Author(s):  
Wendy Sharples ◽  
Andrew Frost ◽  
Ulrike Bende-Michl ◽  
Ashkan Shokri ◽  
Louise Wilson ◽  
...  

<p>Australia has scarce freshwater resources and is already becoming drier under the impacts of climate change. Climate change impacts and other important hydrological processes occur on multiple temporal and spatial scales, prompting the need for large-scale, high-resolution, multidecadal hydrological models. Large-scale hydrological models rely on accurate process descriptions and inputs to be able to simulate realistic multi-scale processes, however parameterization is required to account for limitations in observational inputs and sub-grid scale processes. For example, defining the soil hydraulic boundary conditions at multiple depths using soil input maps at high-resolution across an entire continent is subject to uncertainty. A common way to reduce uncertainty associated with static inputs and parameterization, thereby improving model accuracy and reliability, is to optimize the model parameters toward a long record of historical data, namely calibration. The Australian Bureau of Meteorology’s operational hydrological model (The Australian Water Resources Assessment model: AWRA-L, www.bom.gov.au/water/landscape), which provides real-time monitoring of the continental water balance, is calibrated to a combined performance metric. This metric optimizes model performance against catchment based streamflow and satellite based evaporation and soil moisture observations for 295 sites across the country, where 21 separate parameters are calibrated continentally. Using this approach, AWRA-L has been shown to reproduce independent, historical in-situ data accurately across the water balance.</p><p>Additionally, the AWRA-L model is being used to project future hydrological fluxes and states using bias corrected meteorological inputs from multiple global climate models. Towards improving AWRA-L’s performance and stability for use in hydrological projections, we aim to generate a set of model parameters that perform well under conditions of climate variability as well as under historical conditions, with a two-stage approach. Firstly, a variance based sensitivity analysis for water balance components (e.g. low/mean/high flow, soil moisture and evapotranspiration) is performed, to rank the most influential parameters affecting the water balance components and to subsequently decrease the number of calibratable parameters, thus decreasing dimensionality and uncertainty in the calibration process. Secondly, the reduced parameter set is put through a multi-objective evolutionary algorithm (Borg MOEA, www.borgmoea.org), to capture the tradeoffs between the water balance component performance objectives. The tradeoffs between the water balance component objective functions and in-situ validation data are examined, including evaluation of performance in: a) Climate zones, b) Seasons, c) Wet and dry periods, and d) Trend reproduction. This comprehensive evaluation was undertaken to choose a model parameterization (or set thereof) which produces reasonable hydrological responses under future climate variability across the water balance. The outcome is a suite of parameter sets with improved performance across varying and non-stationary climate conditions. We propose this approach to improve confidence in hydrological models used to simulate future impacts of climate change.</p>


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2004 ◽  
Vol 5 (6) ◽  
pp. 1131-1146 ◽  
Author(s):  
H. Richter ◽  
A. W. Western ◽  
F. H. S. Chiew

Abstract Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999. VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.


2013 ◽  
Vol 17 (3) ◽  
pp. 1177-1188 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.


2011 ◽  
Vol 11 (12) ◽  
pp. 3135-3149 ◽  
Author(s):  
G. Panegrossi ◽  
R. Ferretti ◽  
L. Pulvirenti ◽  
N. Pierdicca

Abstract. The representation of land-atmosphere interactions in weather forecast models has a strong impact on the Planetary Boundary Layer (PBL) and, in turn, on the forecast. Soil moisture is one of the key variables in land surface modelling, and an inadequate initial soil moisture field can introduce major biases in the surface heat and moisture fluxes and have a long-lasting effect on the model behaviour. Detecting the variability of soil characteristics at small scales is particularly important in mesoscale models because of the continued increase of their spatial resolution. In this paper, the high resolution soil moisture field derived from ENVISAT/ASAR observations is used to derive the soil moisture initial condition for the MM5 simulation of the Tanaro flood event of April 2009. The ASAR-derived soil moisture field shows significantly drier conditions compared to the ECMWF analysis. The impact of soil moisture on the forecast has been evaluated in terms of predicted precipitation and rain gauge data available for this event have been used as ground truth. The use of the drier, highly resolved soil moisture content (SMC) shows a significant impact on the precipitation forecast, particularly evident during the early phase of the event. The timing of the onset of the precipitation, as well as the intensity of rainfall and the location of rain/no rain areas, are better predicted. The overall accuracy of the forecast using ASAR SMC data is significantly increased during the first 30 h of simulation. The impact of initial SMC on the precipitation has been related to the change in the water vapour field in the PBL prior to the onset of the precipitation, due to surface evaporation. This study represents a first attempt to establish whether high resolution SAR-based SMC data might be useful for operational use, in anticipation of the launch of the Sentinel-1 satellite.


Sign in / Sign up

Export Citation Format

Share Document