scholarly journals Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

2011 ◽  
Vol 8 (6) ◽  
pp. 11075-11113 ◽  
Author(s):  
A. E. Sikorska ◽  
A. Scheidegger ◽  
K. Banasik ◽  
J. Rieckermann

Abstract. Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced by 150% with Bayesian updating, using only a few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making.

2012 ◽  
Vol 16 (4) ◽  
pp. 1221-1236 ◽  
Author(s):  
A. E. Sikorska ◽  
A. Scheidegger ◽  
K. Banasik ◽  
J. Rieckermann

Abstract. Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced to 5 times with Bayesian updating, using only few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making.


1992 ◽  
Vol 23 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Å. Spångberg ◽  
J. Niemczynowicz

The paper describes a measurement project aiming at delivering water quality data with the very fine time resolution necessary to discover deterministic elements of the complex process of pollution wash-off from an urban surface. Measurements of rainfall, runoff, turbidity, pH, conductivity and temperature with 10 sec time resolution were performed on a simple urban catchment, i.e. a single impermeable 270 m2 surface drained by one inlet. The paper presents data collection and some preliminary results.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 110
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Arlex Sanchez

This paper presents the performance quantification of different green-grey infrastructures, including rainfall-runoff and infiltration processes, on the overland flow and its connection with a sewer system. The present study suggests three main components to form the structure of the proposed model-based assessment. The first two components provide the optimal number of green infrastructure (GI) practices allocated in an urban catchment and optimal grey infrastructures, such as pipe and storage tank sizing. The third component evaluates selected combined green-grey infrastructures based on rainfall-runoff and infiltration computation in a 2D model domain. This framework was applied in an urban catchment in Dhaka City (Bangladesh) where different green-grey infrastructures were evaluated in relation to flood damage and investment costs. These practices implemented separately have an impact on the reduction of damage and investment costs. However, their combination has been shown to be the best action to follow. Finally, it was proved that including rainfall-runoff and infiltration processes, along with the representation of GI within a 2D model domain, enhances the analysis of the optimal combination of infrastructures, which in turn allows the drainage system to be assessed holistically.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 51-56
Author(s):  
F. Calomino ◽  
P. Veltri ◽  
P. Piro ◽  
J. Niemczynowicz

In Urban Hydrology, a basic question is whether or not the common methods involving the use of design storms bring to the the some results obtained by those methods that make use of real storms. In general, one can say that different design storms give good results when used with the appropriate model, or, conversely, that good results can be achieved through careful model calibration. On the basis of 51 rainfall-runoff recordings obtained from the experimental catchment of Luzzi (Cosenza, Italy), the frequency distribution of the observed peak discharges was initially computed. Then the runoff events were simulated using Wallrus, a well known simulation model, taking as input the observed precipitations. The frequency distribution of the simulated peak discharges was compared to that of the observed ones, with the aim of calibrating the model on a statistical basis. After that, the rainfall events were analysed, obtaining the frequency distributions of the observed intensities over several durations and developing IDF curves of given frequencies and, then, the Chicago design storms. The plotting positions of the peak discharges simulated by this way show a good agreement with the distribution of both the observed peak discharges and the peak discharges simulated through the real storms.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2072
Author(s):  
Liuzzo ◽  
Freni

Recent studies have pointed out that climate change is likely to have important implications on the extent and frequency of flooding events. Indeed, the intensification of the water cycle occurring in different areas of the world can dramatically affect the incidence of extreme events and, consequently, the flow in rivers or artificial channels, increasing the probability of disastrous floods. In this context, the criteria for the assessment of flood risk need to be improved to take into account the variability of rainfall due to climate change. In this study, a Bayesian procedure was used to update the parameters of the depth–duration–frequency (DDF) curves and quantify the uncertainty related to their assessment in some climate change scenarios. The critical storm obtained from these updated DDF curves was used as input for the FLO-2D hydraulic model, in order to investigate the effects of climate change on flood risk. The area of study was an urban catchment in Piazza Armerina, a small town located in Southern Italy. Results showed that rainfall variations remarkably affect not only the magnitude of flood events, but also the flood susceptibility of the study area.


2012 ◽  
Vol 616-618 ◽  
pp. 1223-1226
Author(s):  
Xi Zhou Huang ◽  
Ting Zhan

The highway landscape planning is positioned to be a dynamic programming. The highway landscape planning and design process which based on its framework of spiral model has been established. It changed the traditional landscape evaluation method with the help of the method of multi-perspective and animation. The dynamics and intuition of this traditional method are poor, can’t simulate the actual results realistically, and it is troublesome to adjust the dynamic the traditional method of dynamic and intuitive way is poorer, not a real simulation of the actual effect, and the dynamic adjustment is more troublesome. This is the first paper to use CARD_1 software applications to landscape planning and design scheme of visual simulation, this way can directly call the base data in CAD, and it is convenience for engineering and technical personnel to analyze and use.


2020 ◽  
Author(s):  
Jaroslav Pastorek ◽  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Vojtěch Bareš

<p>Commercial microwave links (CMLs) are point-to-point radio connections widely used as cellular backhaul and thus very well covering urbanized areas. They can provide path-integrated quantitative precipitation estimates (QPEs) as they operate at frequencies where radio wave attenuation caused by raindrops is almost proportional to rainfall intensity. Pastorek et al. (2019b) demonstrated the feasibility of using CML QPEs to predict rainfall-runoff in a small urban catchment. Unfortunately, runoff volumes were highly biased, mostly for QPEs from short CMLs, although the temporal runoff dynamics were predicted very well, especially during heavy rainfall events. It was also shown that, for the heavy rainfalls, reducing the bias by adjusting the CML QPEs to traditional rainfall measurements (Fencl et al., 2017) leads to less accurate reproduction of the runoff temporal dynamics.</p><p>Current understanding is that the bias in CML QPEs is often caused by imprecise estimation of wet antenna attenuation (WAA), which is a complex process influenced by many physical phenomena, including radome hardware or positioning of the outdoor unit. However, traditional WAA estimation methods are typically unable to take into account all the individual-level factors. We proposed (Pastorek et al., 2019a) to estimate WAA separately for each of the examined CMLs by using discharge measurements at the outlet of a small urban catchment and showed that this approach can reduce the bias in CML QPEs, leading to generally satisfying performance of rainfall-runoff models, mainly for heavy rainfalls.</p><p>In the presented study, we evaluate the effect of the method proposed in Pastorek et al. (2019a) (method i) on rainfall-runoff modelling in more detail and compare it to the method of Fencl et al. (2017) (method ii). For a case study in Prague-Letňany, Czech Rep., a calibrated rainfall-runoff model is used to predict discharges at the outlet of the small urban catchment (1.3 km<sup>2</sup>) using QPEs from 16 CMLs. First results confirm that minimizing the bias in CML QPEs using method i is convenient mainly for heavy rainfalls, as Nash-Sutcliffe efficiency is considerably higher in this case for all but one CML (on average 0.65; only 0.40 for method ii). Moreover, method i preserves the information about the rainfall temporal dynamics during heavy rainfalls better than method ii for most of the individual CMLs (correlation coefficient with observed runoffs on average 0.83 for method i and 0.78 for method ii). Next steps should include generalization for other case studies, including an exploratory analysis of the potential mismatches.</p><p> </p><p>References</p><p>Fencl, M., Dohnal, M., Rieckermann, J., Bareš, V., 2017. Gauge-adjusted rainfall estimates from commercial microwave links. Hydrol. Earth Syst. Sci. 21, 617–634.</p><p>Pastorek, J., Fencl, M., Rieckermann, J. and Bareš, V., 2019b. Commercial microwave links for urban drainage modelling: The effect of link characteristics and their position on runoff simulations. Journal of environmental management 251, 109522.</p><p>Pastorek, J., Fencl, M., and Bareš, V., 2019a. Calibrating microwave link rainfall retrieval model using runoff observations. Geophysical Research Abstracts 21, EGU2019-10072.</p><p> </p><p>This study was supported by the project no. 20-14151J of the Czech Science Foundation and by the project of the Czech Technical University in Prague no. SGS19/045/OHK1/1T/11.</p>


2013 ◽  
Vol 68 (8) ◽  
pp. 1810-1818 ◽  
Author(s):  
M. Fencl ◽  
J. Rieckermann ◽  
M. Schleiss ◽  
D. Stránský ◽  
V. Bareš

The ability to predict the runoff response of an urban catchment to rainfall is crucial for managing drainage systems effectively and controlling discharges from urban areas. In this paper we assess the potential of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we perform numerical experiments with virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able to show that MWL networks in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability and can thus considerably improve pipe flow prediction, even in small subcatchments. In addition, the better spatial coverage also improves the control of discharges from urban areas. This is especially beneficial for heavy rainfall, which usually has a high spatial variability that cannot be accurately captured by RG point measurements.


Sign in / Sign up

Export Citation Format

Share Document