scholarly journals REDUCTION OF INSAR DEM TROPOSPHERIC NOISE WITH GPS OBSERVATIONS

Author(s):  
A. Sharifi ◽  
M. Hosseingholizadeh

Abstract. Satellite Interferometric Synthetic Aperture Radar (InSAR) Signals are often intensively contaminated by atmospheric delays. The atmospheric conditions especially its water vapor content significantly varies in space and with time. Therefore, it is essential to characterize the atmospheric variations in order to mitigate these effects by appropriate means. In the topographic case, for high-resolution DEM generation, the errors may be decreased by choosing interferometric pairs with relatively long baselines, as the error magnitude is inversely dependent on the perpendicular component of the interferometer baseline. For InSAR DEM quality estimation against tropospheric corrected one, we use the GPS measurements to create the reference DEM in the region. The preliminary results show that the corrected DEM by the phase gradient method has the highest correlation with the ground-based observations and the InSAR DEM which is corrected by phase gradient stacking method for water vapor effect in the troposphere has the best accuracy, ranging from 0.07 ~ 5.81 m, while the InSAR original DEM has an accuracy of 0.29 ~ 14.62 m.

2021 ◽  
Author(s):  
Brian J. Carroll ◽  
Amin R. Nehrir ◽  
Susan Kooi ◽  
James Collins ◽  
Rory A. Barton-Grimley ◽  
...  

Abstract. Airborne differential absorption lidar (DIAL) offers a uniquely capable solution to the problem of measuring water vapor (WV) with high precision, accuracy, and resolution throughout the troposphere and lower stratosphere. The High Altitude Lidar Observatory (HALO) airborne WV DIAL was recently developed at NASA Langley Research Center and was first deployed in 2019. It uses four wavelengths at 935 nm to achieve sensitivity over a wide dynamic range, and simultaneously employs 1064 nm backscatter and 532 nm high spectral resolution lidar (HSRL) measurements for aerosol and cloud profiling. A key component of the WV retrieval framework is flexibly trading resolution for precision to achieve optimal data sets for scientific objectives across scales. A technique for retrieving WV in the lowest few hundred meters of the atmosphere using the strong surface return signal is also presented. The five maiden flights of the HALO WV DIAL spanned the tropics through midlatitudes with a wide range of atmospheric conditions, but opportunities for validation were sparse. Comparisons to dropsonde WV profiles were qualitatively in good agreement, though statistical analysis was impossible due to systematic error in the dropsonde measurements. Comparison of HALO to in situ WV measurements onboard the aircraft showed no substantial bias across three orders of magnitude, despite variance (R2 = 0.66) that may be largely attributed to spatiotemporal variability. Precipitable water vapor measurements from the spaceborne sounders AIRS and IASI compared very well to HALO with R2 > 0.96 over ocean and R2 = 0.86 over land.


2015 ◽  
Vol 8 (3) ◽  
pp. 1073-1087 ◽  
Author(s):  
S. M. Spuler ◽  
K. S. Repasky ◽  
B. Morley ◽  
D. Moen ◽  
M. Hayman ◽  
...  

Abstract. A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation – 50 days with a > 95% uptime – under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.


Author(s):  
Steven E. Borron ◽  
Martin P. Derby

Abstract The transition of satellite InSAR technology to a ground-based system provides a proven risk reduction technology if combined with a critical slope monitoring (CSM) program. Together the technology with the active engagement of a defined program can detect the onset of slope displacement, acceleration, and provide a method to determine slope collapse. Recently, using the radar software, Guardian, and its ability to document surface velocity in intervals of 24-hours or less has allowed for the development of site-specific levels of rockfall risk. The ground-based InSAR (interferometric synthetic aperture radar) systems and their near real-time capabilities allow for proactive and early warning monitoring. The technical requirements include the ability to operate 24/7 in all weather conditions, acquire data in near real-time, and visually present data in an interpretable format that requires no end user processing. Since slope failure without acceleration is unlikely, the rapid visual presentation of processed data becomes a crucial component for a CSM technology. The definition of the CSM program not only requires short intervals for data acquisition, processing, and visual presentation but also requires a monitoring professional that can interpret and communicate changes in slope movement. A specific CSM technology requirement demands, acquiring data at a continuous interval of 2-minutes or less, 24 hours per day for the duration of the monitoring project. Also, the CSM technology must be able to transmit alarm messages at the moment thresholds are met, visually present data with various time series plots, including displacement, and velocity maps while acquired radar data is continuously updated and with no end-user processing. A site-specific document called a trigger action response plan (TARP) needs to be prepared at the start of any CSM project. Currently, only the IBIS-FM and ArcSAR radars developed by IDS (Ingegneria Dei Sistemi) GeoRadar can meet the technical requirements of the defined CSM technology. During a CSM program, the short interval between each data acquisition provides two specific advantages. First, the short acquisition interval decreases interpolation, which automatically increases data confidence. Second, the short intervals also decrease the effects of atmospheric changes that are a part of all data acquisitions. Although the IBIS-FM and ArcSAR radar systems can operate in nearly all-weather conditions, sudden changes in local atmospheric conditions can still exhibit data effects. Both radar systems include active proprietary algorithms that account for ongoing atmospheric changes during acquisitions. In comparison, some remote sensing data acquired from, LIDAR, and total station technologies can be critically affected by sudden changes in local atmospheric conditions. Combining the near real-time capabilities of an interferometric synthetic aperture radar system with a dedicated professional will decrease risk to people and property by allowing slope movement trends to be identified and observed in near real-time, 24-hours per/day. The paper will discuss the highlights of several successful CSM programs. We describe deployment versatility, the ability to identify the onset of displacement accurately, and the critical identification of the onset of acceleration.


2013 ◽  
Vol 14 (5) ◽  
pp. 1659-1671 ◽  
Author(s):  
R. Rosolem ◽  
W. J. Shuttleworth ◽  
M. Zreda ◽  
T. E. Franz ◽  
X. Zeng ◽  
...  

Abstract The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray probe signal and evaluates the fast neutron response in realistic atmospheric conditions using the neutron transport code Monte Carlo N-Particle eXtended (MCNPX). The vertical height of influence of the sensor in the atmosphere varies between 412 and 265 m in dry and wet atmospheres, respectively. Model results show that atmospheric water vapor near the surface affects the neutron intensity signal by up to 12%, corresponding to soil moisture differences on the order of 0.10 m3 m−3. A simple correction is defined to identify the true signal associated with integrated soil moisture that rescales the measured neutron intensity to that which would have been observed in the atmospheric conditions prevailing on the day of sensor calibration. Use of this approach is investigated with in situ observations at two sites characterized by strong seasonality in water vapor where standard meteorological measurements are readily available.


2014 ◽  
Vol 7 (11) ◽  
pp. 11265-11302 ◽  
Author(s):  
S. M. Spuler ◽  
K. S. Repasky ◽  
B. Morley ◽  
D. Moen ◽  
M. Hayman ◽  
...  

Abstract. A field deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes has been constructed and tested. Significant advances are discussed, including: a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with opto-mechanical and thermal stability, multi-stage optical filtering enabling measurement during daytime bright-cloud conditions, rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions, and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing and intercomparisons have been performed and are discussed. In general, the instrument has 150 m range resolution with 10 min temporal resolution – 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument was shown capable of autonomous long term field operation – 50 days with a >95% uptime – under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.


2019 ◽  
Vol 100 (8) ◽  
pp. 1499-1509 ◽  
Author(s):  
Jason M. Cordeira ◽  
Jonathan Stock ◽  
Michael D. Dettinger ◽  
Allison M. Young ◽  
Julie F. Kalansky ◽  
...  

AbstractWe compare a novel dataset of San Francisco Bay Area landslides from 1871 to 2012 to corresponding atmospheric conditions commonly associated with Pacific winter storms and landfalling atmospheric rivers (ARs). Landslides in the San Francisco Bay Area occur primarily during winter months, coinciding with enhanced integrated water vapor transport (IVT) magnitudes ≥250 kg m–1 s–1 at the coast 76% of the time and with landfalling ARs over the near-offshore northeast Pacific 82% of the time. Results illustrate that days, or the first in a series of days, with a landslide (i.e., landslide onset days) typically occur in association with NOAA Twentieth Century Reanalysis–derived IVT magnitudes ≥250 kg m–1 s–1 that persist for ∼20 h and temporal maxima in precipitation rates. Composite analyses of sea level pressure, integrated water vapor, and IVT during 3-month periods during September–May on landslide onset days further illustrate that these events coincide with regions of low pressure to the northwest of California and high pressure to the south, synoptic-scale flow conditions associated with strong onshore flow, and water vapor transports in the form of landfalling ARs.


2017 ◽  
Vol 10 (11) ◽  
pp. 4303-4316 ◽  
Author(s):  
Maria Filioglou ◽  
Anna Nikandrova ◽  
Sami Niemelä ◽  
Holger Baars ◽  
Tero Mielonen ◽  
...  

Abstract. We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitée Adaptation dynamique Développement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are  < 2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50 % up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15±0.40 g kg−1); during summer it is wet (5.54±1.02 g kg−1); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.


Sign in / Sign up

Export Citation Format

Share Document