scholarly journals UAV-based photogrammetry: monitoring of a building zone

Author(s):  
J. Unger ◽  
M. Reich ◽  
C. Heipke

The use of small-size unmanned aerial vehicles (UAV) for civil applications in many different fields such as archaeology, disaster monitoring, aerial surveying or mapping has significantly increased in recent years. The high flexibility and the low cost per acquired information compared to classical systems – terrestrial or aerial – offer a high variety of different applications. This paper addresses the photogrammetric analysis of a monitoring project and gives an insight into the potential of UAV using low cost sensors and present-day processing software. The area of interest is the "zero:e-park", a building zone of zero emission housing in Hannover, Germany, that we monitored in three different epochs over a period of five months. We show that we can derive three dimensional information with an accuracy of a few centimetres. Changes during the epochs, also small ones like the dismantling of scaffolding can be detected. We also depict the limitations of the DEM generation approach which occur at sharp edges and height jumps as well as repetitive structure. Additionally, we compare two different commercial software packages which reveals that some systematic errors still remain in the results.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijiao Ma ◽  
Shaoqing Zhang ◽  
Jincheng Zhu ◽  
Jingwen Wang ◽  
Junzhen Ren ◽  
...  

AbstractNon-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.


Author(s):  
J. Chen ◽  
O. E. Mora ◽  
K. C. Clarke

<p><strong>Abstract.</strong> In recent years, growing public interest in three-dimensional technology has led to the emergence of affordable platforms that can capture 3D scenes for use in a wide range of consumer applications. These platforms are often widely available, inexpensive, and can potentially find dual use in taking measurements of indoor spaces for creating indoor maps. Their affordability, however, usually comes at the cost of reduced accuracy and precision, which becomes more apparent when these instruments are pushed to their limits to scan an entire room. The point cloud measurements they produce often exhibit systematic drift and random noise that can make performing comparisons with accurate data difficult, akin to trying to compare a fuzzy trapezoid to a perfect square with sharp edges. This paper outlines a process for assessing the accuracy and precision of these imperfect point clouds in the context of indoor mapping by integrating techniques such as the extended Gaussian image, iterative closest point registration, and histogram thresholding. A case study is provided at the end to demonstrate use of this process for evaluating the performance of the Scanse Sweep 3D, an ultra-low cost panoramic laser scanner.</p>


Author(s):  
Manisha Jassal ◽  
Shawn M. Regis ◽  
Sankha Bhowmick

The covalent immobilization of various compounds onto functionalized polymer surfaces has been an area of interest to the researchers in the past decade. Methods that can be used to alter the surface properties of materials to improve performance, biocompatibility or to achieve certain desired effects are a key to continued development of these materials [1]. The artificial scaffolds trying to mimic the architecture of natural human tissues at nanoscale may lead to successful implants within the body [2]. Among various nano-scaled materials, nano fibers produced by electrospinning process offer advantages as comparatively low cost, production of continuous fibers, feasibility of complex and seamless three dimensional shapes and many more. In the present work, polycaprolactone nanofibers were generated by electrospinning process and the scaffolds were functionalized in two different ways i.e. by amination followed by subsequent RGD immobilization and hydrolysis. Thereafter, fibroblast cells behavior was studied on functionalized scaffolds.


Author(s):  
B. Carragher ◽  
D. F. Hessler ◽  
J. E. Hinshaw ◽  
M. Martone ◽  
R. A. Milligan ◽  
...  

The range of problems accessible to study using high voltage microscopy encompasses structures that span a wide range of dimensions from Angstroms to tens of microns. Structurally oriented cell biologists and neurobiologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. Comprehension of these structures can be greatly enhanced by the application of computer aided three dimensional reconstruction and analysis techniques.The past decade has seen an explosive growth in the capabilities for the digital acquisition of images. At the same time, the availability of relatively inexpensive graphics workstations and sophisticated image processing and analysis software packages has made graphics and imaging techniques accessible to most research laboratories. However, the complexity of problems studied in the biological sciences has always presented a challenge to the techniques used in the analysis, and methods based on computer graphics are certainly no exception to this rule.


2014 ◽  
Vol 620 ◽  
pp. 83-89 ◽  
Author(s):  
You Juan Ma ◽  
Xiao Wang ◽  
Peng Hui Xu ◽  
Qiang Zhang ◽  
Hui Xia Liu ◽  
...  

Laser-driven flyer micro forming process is a promising microforming technology with the advantage of high efficiency, low cost, high flexibility. A series of experiments are conducted to investigate forming ability of aluminum foil with the thickness of 50μm. The effect of forming temperature and laser energy on forming ability characterized by forming depth, forming accuracy and surface quality is quantitatively analyzed. It is found that forming depth observed through three dimensional topography increases with the enhancement of forming temperature and laser energy. By elevating the forming temperature, the preheated workpiece suffers more homogenous deformation, presenting better forming accuracy. However, a certain degree of deterioration of surface integrity at the forming temperature of 200°C can be attributed to the earlier appearance of micro cracks caused by excessive thinning even at low laser energy. Overall, it is concluded that the optimal forming temperature is appropriately 150°C as the forming depth and forming accuracy is improved with no deterioration of the surface integrity.


2019 ◽  
Vol 8 (9) ◽  
pp. 409 ◽  
Author(s):  
Yumin Tan ◽  
Yunxin Li

The timely and proper rehabilitation of damaged roads is essential for road maintenance, and an effective method to detect road surface distress with high efficiency and low cost is urgently needed. Meanwhile, unmanned aerial vehicles (UAVs), with the advantages of high flexibility, low cost, and easy maneuverability, are a new fascinating choice for road condition monitoring. In this paper, road images from UAV oblique photogrammetry are used to reconstruct road three-dimensional (3D) models, from which road pavement distress is automatically detected and the corresponding dimensions are extracted using the developed algorithm. Compared with a field survey, the detection result presents a high precision with an error of around 1 cm in the height dimension for most cases, demonstrating the potential of the proposed method for future engineering practice.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


2021 ◽  
Vol 10 (7) ◽  
pp. 460
Author(s):  
Mario Matthys ◽  
Laure De Cock ◽  
John Vermaut ◽  
Nico Van de Weghe ◽  
Philippe De Maeyer

More and more digital 3D city models might evolve into spatiotemporal instruments with time as the 4th dimension. For digitizing the current situation, 3D scanning and photography are suitable tools. The spatial future could be integrated using 3D drawings by public space designers and architects. The digital spatial reconstruction of lost historical environments is more complex, expensive and rarely done. Three-dimensional co-creative digital drawing with citizens’ collaboration could be a solution. In 2016, the City of Ghent (Belgium) launched the “3D city game Ghent” project with time as one of the topics, focusing on the reconstruction of disappeared environments. Ghent inhabitants modelled in open-source 3D software and added animated 3D gamification and Transmedia Storytelling, resulting in a 4D web environment and VR/AR/XR applications. This study analyses this low-cost interdisciplinary 3D co-creative process and offers a framework to enable other cities and municipalities to realise a parallel virtual universe (an animated digital twin bringing the past to life). The result of this co-creation is the start of an “Animated Spatial Time Machine” (AniSTMa), a term that was, to the best of our knowledge, never used before. This research ultimately introduces a conceptual 4D space–time diagram with a relation between the current physical situation and a growing number of 3D animated models over time.


Sign in / Sign up

Export Citation Format

Share Document