scholarly journals Two-temperature dual-phase-lags theory in a thermoelastic solid half-space due to an inclined load

2016 ◽  
Vol 7 (2) ◽  
pp. 179-187
Author(s):  
Ashraf M. Zenkour ◽  
Ahmed E. Abouelregal ◽  
Khaled A. Alnefaie ◽  
Nidal H. Abu-Hamdeh ◽  
Abdulmalik A. Aljinaidi ◽  
...  

Abstract. This article addresses the thermoelastic interaction due to inclined load on a homogeneous isotropic half-space in context of two-temperature generalized theory of thermoelasticity with dual-phase-lags. It is assumed that the inclined load is a linear combination of both normal and tangential loads. The governing equations are solved by using the normal mode analysis. The variations of the displacement, stress, conductive temperature, and thermodynamic temperature distributions with the horizontal distance have been shown graphically. Results of some earlier workers have also been deduced from the present investigation as special cases. Some comparisons are graphically presented to estimate the effects of the two-temperature parameter, the dual-phase-lags parameters and the inclination angle. It is noticed that there is a significant difference in the values of the studied fields for different value of the angle of inclination. The method presented here maybe applicable to a wide range of problems in thermodynamics and thermoelasticity.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kh. Lotfy ◽  
Wafaa Hassan

The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS) and the classical dynamical coupled theory (CD). The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Baljeet Singh

The Rayleigh surface wave is studied at a stress-free thermally insulated surface of an isotropic, linear, and homogeneous two-temperature thermoelastic solid half-space in the context of Lord and Shulman theory of generalized thermoelasticity. The governing equations of a two-temperature generalized thermoelastic medium are solved for surface wave solutions. The appropriate particular solutions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The speed of Rayleigh wave is computed numerically and shown graphically to show the dependence on the frequency and two-temperature parameter.


2015 ◽  
Vol 31 (6) ◽  
pp. 639-651 ◽  
Author(s):  
S. Deswal ◽  
N. Hooda

ABSTRACTThe present paper is concerned with an in-depth study of the effects of rotation, two-temperature parameter and voids on the magneto-thermoelastic interactions in a homogeneous, isotropic, generalized half-space with gravity field. The formulation is applied within the frame-work of two-temperature generalized thermoelasticity based on the hyperbolic heat conduction model with one relaxation time. Using normal mode analysis technique for the physical variables appearing in the governing equations, we get the analytical expressions for displacement components, stress, thermodynamic temperature, conductive temperature and change in volume fraction field. The general solution obtained is then applied to a specific problem of an infinite half-space having isothermal boundary subjected to mechanical load. Variations of the considered variables through the vertical distance are illustrated graphically.


2014 ◽  
Vol 5 (2) ◽  
pp. 86-106 ◽  
Author(s):  
Khaled Lotfy ◽  
N. Yahia ◽  
W. Hassan

Purpose – A model of the equations of two-dimensional problems in a half space, whose surface in free of micropolar thermoelastic medium possesses cubic symmetry as a result of a mode-I crack is studied. There acts an initial magnetic field parallel to the plane boundary of the half-space. The crack is subjected to prescribed temperature and stress distribution. The formulation in the context of the Lord-Shulman theory includes one relaxation time and Green-Lindsay theory with two relaxation times, as well as the classical dynamical coupled theory. The paper aims to discuss these issues. Design/methodology/approach – The normal mode analysis is used to obtain the exact expressions for the displacement, microrotation, stresses and temperature distribution. Findings – The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results in the presence of magnetic field. Originality/value – A comparison is also made between the three theories for different depths in 3D plots.


2018 ◽  
Vol 14 (1) ◽  
pp. 102-124 ◽  
Author(s):  
Sunita Deswal ◽  
Baljit Singh Punia ◽  
Kapil Kumar Kalkal

Purpose The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem for a medium. The paper aims to discuss this issue. Design/methodology/approach The exact expressions of the considered variables are obtained by using normal mode analysis. Findings Numerical results for the field quantities are given in the physical domain and illustrated graphically to show the effect of angle of inclination. Comparisons of the physical quantities are also shown in figure to study the effect of gravity and two-temperature parameter. Originality/value This paper is concerned with the analysis of transient wave phenomena in a micropolar thermoelastic half-space subjected to inclined load. The governing equations are formulated in the context of two-temperature generalized thermoelasticity theory with DPLs. A medium is assumed to be initially quiescent and under the effect of gravity. An analytical solution of the problem is obtained by employing normal mode analysis. Numerical estimates of displacement, stresses and temperatures are computed for magnesium crystal-like material and are illustrated graphically. Comparisons of the physical quantities are shown in figures to study the effects of gravity, two-temperature parameter and angle of inclination. Some particular cases of interest have also been inferred from the present problem.


Geophysics ◽  
1973 ◽  
Vol 38 (3) ◽  
pp. 557-580 ◽  
Author(s):  
A. P. Annan

Radio interferometry is a technique for measuring in‐situ electrical properties and for detecting subsurface changes in electrical properties of geologic regions with very low electrical conductivity. Ice‐covered terrestrial regions and the lunar surface are typical environments where this method can be applied. The field strengths about a transmitting antenna placed on the surface of such an environment exhibit interference maxima and minima which are characteristic of the subsurface electrical properties. This paper (Part I) examines the theoretical wave nature of the electromagnetic fields about various types of dipole sources placed on the surface of a low‐loss dielectric half‐space and two‐layer earth. Approximate expressions for the fields have been found using both normal mode analysis and the saddle‐point method of integration. The solutions yield a number of important results for the radio interferometry depth‐sounding method. The half‐space solutions show that the interface modifies the directionality of the antenna. In addition, a regular interference pattern is present in the surface fields about the source. The introduction of a subsurface boundary modifies the surface fields with the interference pattern showing a wide range of possible behaviors. These theoretical results provide a basis for interpreting the experimental results described in Part II.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bingran Wang ◽  
Tiancheng Lou ◽  
Lingling Wei ◽  
Wenchan Chen ◽  
Longbing Huang ◽  
...  

AbstractAlternaria alternata, a causal agent of leaf blights and spots on a wide range of hosts, has a high risk of developing resistance to fungicides. Procymidone, a dicarboximide fungicide (DCF), has been widely used in controlling Alternaria leaf blights in China for decades. However, the resistance of A. alternata against DCFs has rarely been reported from crucifer plants. A total of 198 A. alternata isolates were collected from commercial fields of broccoli and cabbage during 2018–2019, and their sensitivities to procymidone were determined. Biochemical and molecular characteristics were subsequently compared between the high-level procymidone-resistant (ProHR) and procymidone-sensitive (ProS) isolates, and also between ProHR isolates from broccoli and cabbage. Compared with ProS isolates, the mycelial growth rate, sporulation capacity and virulence of most ProHR isolates were reduced; ProHR isolates displayed an increased sensitivity to osmotic stresses and a reduced sensitivity to sodium dodecyl sulfate (SDS); all ProHR isolates showed a reduced sensitivity to hydrogen peroxide (H2O2) except for the isolate B102. Correlation analysis revealed a positive cross-resistance between procymidone and iprodione, or fludioxonil. When treated with 10 μg/mL of procymidone, both mycelial intracellular glycerol accumulations (MIGAs) and relative expression of AaHK1 in ProS isolates were higher than those in ProHR isolates. Sequence alignment of AaHK1 from ten ProHR isolates demonstrated that five of them possessed a single-point mutation (P94A, V612L, E708K or Q924STOP), and four isolates had an insertion or a deletion in their coding regions. No significant difference in biochemical characteristics was observed among ProHR isolates from two different hosts, though mutations in AaHK1 of the cabbage-originated ProHR isolates were distinct from those of the broccoli-originated ProHR isolates.


Sign in / Sign up

Export Citation Format

Share Document