scholarly journals Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V)

2018 ◽  
Vol 9 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Gulfam Ul Rehman ◽  
Syed Husain Imran Jaffery ◽  
Mushtaq Khan ◽  
Liaqat Ali ◽  
Ashfaq Khan ◽  
...  

Abstract. The use of titanium based alloys in aerospace and biomedical applications make them an attractive choice for research in micro-machining. In this research, low speed micro-milling is used to analyze machinability of Ti-6Al-4V alloy as low speed machining setup is not expensive and it can be carried out on conventional machine tools already available at most machining setups. Parameters like feed per tooth, cutting speed and depth of cut are selected as machining variables and their effect on burr formation is analyzed through statistical technique analysis of variance to determine key process variables. Results show that feed per tooth is the most dominant factor in burr formation (81 % contribution ratio). The effect of depth of cut was found to be negligible. It was also observed that micro-milling at optimum process parameters showed minimum burr formation. In terms of burr formation, as compared to high speed machining setup, better results were achieved at low speed machining setup by varying machining parameters.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2011 ◽  
Vol 188 ◽  
pp. 636-641 ◽  
Author(s):  
M.H. Xiao ◽  
N. He ◽  
L. Li ◽  
B.G. Qiu ◽  
Y. Su

The present paper is an attempt of an experimental investigation on the machinability of superalloy, K424 during high speed turning using different ceramic inserts under different cutting speed and cooling/lubricating condition. The effect of machining parameters on the tool wear was examined through SEM micrographs.The experimental results show that, round Al2O3+SiCW KY4300R ceramic insert shows the best cutting performance in cutting the superalloy K424 , and it should be used in rather higher speed. Cold nitrogen gas is not recommended when machining nickel-based alloy with ceramic tools. SEM and EDS analysis shows that the ceramic tool was severely controlled by tool nose and depth-of-cut notch wear, followed by flaking and chipping.


Author(s):  
Said Jahanmir ◽  
Michael J. Tomaszewski ◽  
Hooshang Heshmat

Small precision parts with miniaturized features are increasingly used in components such as sensors, micro-medical devices, micro-fuel cells, and others. Mechanical micromachining processes, e.g., turning, drilling, milling and grinding are often used for fabrication of miniaturized components. The small micro-tools (50 μm to 500 μm diameter) used in micromachining limit the surface speeds achieved at the cutting point, unless the rotational speeds are substantially increased. Although the cutting speeds increase to 240 m/min with larger diameter tools (e.g., 500 μm) when using the highest available spindle speed of 150,000 rpm, the cutting speed with the smaller 50 μm tools is limited to 24 m/min. This low cutting speed at the tool tip is much smaller than the speeds required for efficient cutting. For example, in macro-milling of aluminum alloys the recommended speed is on the order of 60–200 m/min. The use of low cutting speeds limits the production rate, increases tool wear and tendency for burr formation, and limits the degree of dimensional tolerance and precision that can be achieved. The purpose of the present paper is to provide preliminary results that show the feasibility of ultra high-speed micro-milling of an aluminum alloy with respect to surface quality and burr formation. A new ultra high-speed spindle was used for micro-milling of an aluminum alloy with micro-end-mills ranging in diameter from 51 μm to 305 μm. Straight channels were machined to obtain an array of square patterns on the surface. High surface cutting speeds up to 340 m/min were achieved at 350,000 rpm. Inspection of the machined surfaces indicated that edge quality and burr formation tendency are related to the undeformed chip thickness, and therefore the cutting speed and feed rate. The quantity of burrs observed on the cut surfaces was generally small, and therefore, the burr types were not systematically determined. Cutting with the 305 μm tool at a cutting speed of 150 m/min produced an excellent cut quality using a chip thickness of 0.13 μm. However, the cut quality deteriorated as the chip thickness was decreased to 0.06 μm by increasing the cutting speed to 340 mm/min. This result is consistent with published data that show the dependence of bur formation on ratio of chip thickness to tool tip radius. The channel widths were also measured and the width of channels cut with the small diameter tools became larger than the tool diameter at higher speeds. The dependence of the channel widths on rotational speed and the fact that a similar variation was not observed for larger diameter tools, suggested that this phenomena is related to dynamic run-out of the tool tip, which increases the channel width at higher speeds.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2021 ◽  
Author(s):  
Chitransh Singh ◽  
Arnab Das ◽  
Vivek Bajpai ◽  
Madan Lal Chandravanshi

Abstract High-speed micro-milling is an emerging technology used to produce micro and miniaturized products with smooth surface finish and high dimensional precision. However, tool vibration is a major problem in micro-milling as it directly affects the product accuracy, surface quality and tool life. Inappropriate selection of process parameters increases radial and axial thrust as well as force transmitted to structure during micro-machining which results in rapid tool vibration. This work focuses on the experimental investigation of process parameters (cutting speed and depth of cut) in order to reduce tool vibration due to axial and radial thrust in high-speed micro-milling. The tool used in this experiment is a 2-flute end mill cutter (1 mm cutter diameter) and workpiece is a commercially pure titanium (CpTi) plate. The operation was performed at different depth of cut and varying cutting speeds keeping the chip load constant. Vibration signals were acquired and processed to obtain the vibration thrust of the tool and the force transmitted to the structure. The results indicated that as the depth of cut and cutting speed increases, both axial as well as radial thrust decreases leading to lower vibration amplitude of the cutting tool and reduction in force transmitted to the machine structure.


2020 ◽  
Vol 11 (3) ◽  
pp. 307-312
Author(s):  
Endra Saputra ◽  
◽  
Gusri Akhyar Ibrahim ◽  
Suryadiwansa Harun ◽  
Eko Agus Supriyadi ◽  
...  

One of the ingredients that are popular now is titanium, but titanium is a material that is difficult to process using conventional milling machining because of the poor thermal conductivity of the material so that the high-temperature machining process produced in the cutting zone causes plastic deformation in cutting tools and increased chemical reactivity in titanium. High-speed micro-milling machining can be used for micromachining of hard metals or alloys that are difficult to achieve at low speeds. Micro milling machining in titanium material 6Al-4V ELI with variations in milling knife diameter 1 and 2 mm, spindle speed 10.000 and 15.000 rpm, feed 0,001 and 0,005 mm / rev, depth of cut 100 and 150 μm, which then do data processing using the method Taguchi full factorial and theoretical analysis. The results showed that the diameter of the tool and into the cut had the greatest effect on burr formation, the greater the diameter of the milling blade resulted in the formation of shorter and smaller burrs, the use of a 1 mm diameter milling blade and a 150 μm depth cut gave rise to long burr formations and tight, while the use of a 2 mm diameter milling blade and a cutting depth of 100 μm give rise to a short and slight burr formation.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


2012 ◽  
Vol 445 ◽  
pp. 62-67 ◽  
Author(s):  
J.B. Saedon ◽  
S.L. Soo ◽  
D.K. Aspinwall ◽  
A. Barnacle

The paper presents an experimental investigation into the slotting of hardened AISI D2 (~62HRC) tool steel using 0.5mm diameter coated (TiAlN) tungsten carbide (WC) end mills. SEM analysis of tool morphology and coating integrity was undertaken on all tools prior to testing. Tool wear details are given based on resulting cutter diameter and slot width reduction. In addition, cutting forces are also presented together with details of workpiece burr formation. A full factorial experimental design was used with variation of cutting speed, feed rate and depth of cut, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on microscale milling best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors. Cutting speed was shown to have the greatest effect on tool wear (33% PCR). When operating at 50m/min cutting speed with a feed rate of 8µm/rev and a depth of cut of 55µm, cutter diameter showed a reduction of up to 82µm for a 520mm cut length. SEM micrographs of tool wear highlighted chipping / fracture as the primary wear mode with adhered workpiece material causing further attritious wear when machining was continued up to 2.6m cut length. All tests produced burrs on the top edges of the slots which varied in size / width to a lesser or greater degree. Under the most severe operating conditions, burr width varied from approximately 50µm to more than 220µm over the 520mm cut length. Cutting forces in general were less than 12N up to test cessation.


2014 ◽  
Vol 660 ◽  
pp. 79-83 ◽  
Author(s):  
E.A. Rahim ◽  
N.M. Warap ◽  
Zazuli Mohid ◽  
R. Ibrahim

Micro milling of super alloy materials such as nickel based alloys is challenging due to the excellent of its mechanical properties. Therefore, new techniques have been suggested to enhance the machinability of nickel based alloys by pre-heating the workpiece’s surface to reduce its strength. Determining the processing parameters and their effects to the processing characteristics are crucially important. However, not only the micro-milling parameters need to be considered, but the pre-heating parameters are also need to take into consideration as well. These parameters are expected to improve the machinability. In this study, the experiment of LAMM in Inconel 718 was conducted with considering laser power, cutting speed, depth of cut, feed rate and laser-to-cutting tool distance. From the result, the effectiveness of laser assisted and cutting parameter in term of cutting force and tool wear was identified by comparing between conventional and LAMM. Finally, the optimum range of machining parameters can be determined.


2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


Sign in / Sign up

Export Citation Format

Share Document