Ultra High-Speed Micro-Milling of Aluminum Alloy

Author(s):  
Said Jahanmir ◽  
Michael J. Tomaszewski ◽  
Hooshang Heshmat

Small precision parts with miniaturized features are increasingly used in components such as sensors, micro-medical devices, micro-fuel cells, and others. Mechanical micromachining processes, e.g., turning, drilling, milling and grinding are often used for fabrication of miniaturized components. The small micro-tools (50 μm to 500 μm diameter) used in micromachining limit the surface speeds achieved at the cutting point, unless the rotational speeds are substantially increased. Although the cutting speeds increase to 240 m/min with larger diameter tools (e.g., 500 μm) when using the highest available spindle speed of 150,000 rpm, the cutting speed with the smaller 50 μm tools is limited to 24 m/min. This low cutting speed at the tool tip is much smaller than the speeds required for efficient cutting. For example, in macro-milling of aluminum alloys the recommended speed is on the order of 60–200 m/min. The use of low cutting speeds limits the production rate, increases tool wear and tendency for burr formation, and limits the degree of dimensional tolerance and precision that can be achieved. The purpose of the present paper is to provide preliminary results that show the feasibility of ultra high-speed micro-milling of an aluminum alloy with respect to surface quality and burr formation. A new ultra high-speed spindle was used for micro-milling of an aluminum alloy with micro-end-mills ranging in diameter from 51 μm to 305 μm. Straight channels were machined to obtain an array of square patterns on the surface. High surface cutting speeds up to 340 m/min were achieved at 350,000 rpm. Inspection of the machined surfaces indicated that edge quality and burr formation tendency are related to the undeformed chip thickness, and therefore the cutting speed and feed rate. The quantity of burrs observed on the cut surfaces was generally small, and therefore, the burr types were not systematically determined. Cutting with the 305 μm tool at a cutting speed of 150 m/min produced an excellent cut quality using a chip thickness of 0.13 μm. However, the cut quality deteriorated as the chip thickness was decreased to 0.06 μm by increasing the cutting speed to 340 mm/min. This result is consistent with published data that show the dependence of bur formation on ratio of chip thickness to tool tip radius. The channel widths were also measured and the width of channels cut with the small diameter tools became larger than the tool diameter at higher speeds. The dependence of the channel widths on rotational speed and the fact that a similar variation was not observed for larger diameter tools, suggested that this phenomena is related to dynamic run-out of the tool tip, which increases the channel width at higher speeds.

2020 ◽  
Vol 990 ◽  
pp. 13-17 ◽  
Author(s):  
Qi Hang Shi ◽  
Zong Cheng Hao ◽  
Shuai Wang ◽  
Xiu Li Fu ◽  
Hui Wang

Aluminum alloy 7050-T7451 is widely used in aeronautical large structural parts, and high speed cutting is often used in machining. The serrated chip is a critical state for chip formation in high speed cutting, and its formation and control mechanism are of great significance for actual machining. To study the chip formation of high speed cutting aluminum alloy 7050-T7451, the chips at different cutting speeds are obtained by high speed cutting experiments. Combined with microscopic observation, the chip shape evolution, chip localization fracture process and mechanism of different cutting speeds are analyzed. The morphological evolution of chips and the mechanism of chip breaking during high speed cutting of aluminum alloy are revealed. According to the machined surface of the chip root and the angle of the chip, the formation mechanism of the curl radius formed by the chip is analyzed. The critical cutting speed of plastic-brittle transformation of aluminum alloy 7050-T7451 in high speed cutting is obtained by studying the critical condition for strip-to-serration transition of chip morphology.


2018 ◽  
Vol 9 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Gulfam Ul Rehman ◽  
Syed Husain Imran Jaffery ◽  
Mushtaq Khan ◽  
Liaqat Ali ◽  
Ashfaq Khan ◽  
...  

Abstract. The use of titanium based alloys in aerospace and biomedical applications make them an attractive choice for research in micro-machining. In this research, low speed micro-milling is used to analyze machinability of Ti-6Al-4V alloy as low speed machining setup is not expensive and it can be carried out on conventional machine tools already available at most machining setups. Parameters like feed per tooth, cutting speed and depth of cut are selected as machining variables and their effect on burr formation is analyzed through statistical technique analysis of variance to determine key process variables. Results show that feed per tooth is the most dominant factor in burr formation (81 % contribution ratio). The effect of depth of cut was found to be negligible. It was also observed that micro-milling at optimum process parameters showed minimum burr formation. In terms of burr formation, as compared to high speed machining setup, better results were achieved at low speed machining setup by varying machining parameters.


Author(s):  
Ning Fang ◽  
Juhchin Yang ◽  
Nan Liu

High speed machining has received increasingly broad applications in various industries, especially in the aircraft and aerospace industry, where a large number of structural frames are machined. Based on Manyindo and Oxley’s descriptive model of serrated chip formation, this paper proposes a new mathematical model for high speed machining of 7075-T6 aluminum alloy. The new model integrates Johnson-Cook’s material model with Oxley’s machining theory and is validated by using the published experimental data. A good agreement between the predicted and experimental degree of chip segmentation is reached. The effects of cutting conditions and tool geometry on the serrated chip geometry, the cutting forces, and the shear-plane angles are quantitatively investigated. The analysis shows that a large undeformed chip thickness, a negative tool rake angle, and a high cutting speed strengthen the degree of chip segmentation in high speed machining.


2017 ◽  
Vol 889 ◽  
pp. 84-89
Author(s):  
Pandithevan Ponnusamy ◽  
Mullapudi Joshi

In high speed machining, to dynamically control the mechanical behaviour of the materials, it is essential to control temperature, stress and strain by appropriate speed, feed and depth of cut. In the present work, to predict the mechanical behaviour of Ti6Al4V and 316L steel bio-materials an explicit dynamic analysis with different cutting speeds was carried out. Orthogonal cutting of 316L steel and Ti6Al4V materials with 720 m/min, 900 m/min and 1200 m/min cutting speeds was performed, and the distribution of stress and temperature was investigated using Jonson-Cook material model. Additionally, the work aimed at determining the effect of cutting speed on work piece temperature, when cutting is carried out continuously. From the investigation, it was found that, while machining Ti6Al4V material, for the increase in cutting speed there was increase in tool-chip interface temperature. Specifically, this could found till the cutting speed 900 m/min. But, there was a decrease in tool-chip interface temperature for the increase in speed from 900 m/min to 1200 m/min. Similarly for 316L steel, the tool-chip interface temperature increased when increasing the cutting speed till 900 m/min. But reduction in temperature from 650 °C to 500 °C for steel and 1028 °C to 990 °C for Ti6Al4V were found, when the cutting speed increased from 900 m/min to 1200 m/min. The study can be used to conclude, at what temperature range the adoption of material with controlled shape and geometry is possible for potential applications like, prosthetic design and surgical instruments prior to fabrications.


2012 ◽  
Vol 523-524 ◽  
pp. 1041-1046 ◽  
Author(s):  
Tappei Higashi ◽  
Masato Sando ◽  
Jun Shinozuka

High-speed orthogonal cutting experiments with cutting speeds of up to 200 m/s with a high-speed impact cutting tester of air-gun type are attempted. In this tester, a light projectile with a small built-in cutting tool is loaded into a tube, being accelerated by a compressed gas. The projectile captures the chip that is indispensable to analyze the cutting mechanism. The projectile holding the chip is decelerated by another compressed gas just after finishing the cutting, being stopped without damage in the tube. Successful experiment can be accomplished by setting adequate values of the operation parameters for the experiment, which are the pressure of each gas and the opening and shutting time of the solenoid-controlled valve for each compressed gas. In order to determine the adequate values of these parameters, a ballistic simulator that simulates the velocity and position of the projectile traveling in the tube is developed. By setting the values of these parameters obtained by the simulator, the cutting speed of 200 m/s is achieved when the ambient pressure is set to be a vacuum and helium is used for each compressed gas. This paper describes the ballistic simulator developed and shows the experimental results of the high-speed cutting of aluminum alloy A2017.


2012 ◽  
Vol 217-219 ◽  
pp. 1912-1916
Author(s):  
Ji Hua Wu

Surface roughness plays a critical role in evaluating and measuring the surface quality of a machined product. Two workpiece materials have been investigated by experimental approach in order to gain a better understanding of their influence on the obtained surface roughness in the micro-milling processes. The experimental results show that: surface topography is completely different for different materials at the same cutting speed and feed rate; surface roughness increases with an increase of material grain size. Surface roughness decreases to a lowest value, and then increases with an increase of the feed rate. A new surface model to illustrate the influence of material and uncut chip thickness was developed. The model has been experimentally validated and shows more promising results than Weule’s model.


Author(s):  
Justin L. Milner ◽  
Jeffrey A. Beers ◽  
John T. Roth

Machining is a popular and versatile manufacturing process that is widely used in today’s industry when producing metallic parts; however, limited tool life can make this an expensive and time consuming fabrication technique. Consequently, methods that decrease the rate of tool wear and, thus, increase tool longevity are a vital component when improving the efficiency of machining processes. To this end, cryogenically treating cutting tools (especially high-speed steel tooling) is becoming more commonplace since research has shown that the treated tooling exhibits significantly higher wear resistance. At this point, however, the effect of cryogenic treatments on ceramic tooling has not been established. Considering this, the research herein presents a feasibility study on the effectiveness of using cryogenic treatments to enhance the wear resistance of WG-300 whisker-reinforced ceramic cutting inserts. To begin, the effect of the cryogenic treatment on the insert’s hardness is examined. Subsequently, tool wear tests are conducted at various cutting speeds. Through this study, it is shown that cryogenically treating the ceramic inserts decreases the rate of tool wear at each of the cutting speeds that were tested. However, the degree of wear resistance introduced by cryogenically treating the inserts proved to be highly dependent on the cutting speed, with slower speeds exhibiting greater improvements. Thus, based on this initial study, the cryogenic treatment of ceramic tooling appears to produce beneficial results, potentially increasing the overall efficiency of machining processes.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


2010 ◽  
Vol 126-128 ◽  
pp. 653-657 ◽  
Author(s):  
Guang Ming Zheng ◽  
Jun Zhao ◽  
Xin Yu Song ◽  
Cao Qing Yan ◽  
Yue En Li

This paper explores the wear mechanisms of a Sialon ceramic tool in ultra high speed turning of Nickel-based alloy Inconel 718. Microstructures of the chips are also investigated. Stereo optical microscope and scanning electron microscope (SEM) are employed to observe worn surfaces of the tool produced by various wear mechanisms and morphological features of chips. In addition, the elemental compositions of wear products are evaluated by energy-dispersive X-ray spectroscopy (EDS). As a result of the study, wear mechanisms identified in the machining tests involve adhesive wear and abrasive wear. At the initial stage of cutting process, crater wear and flank wear are the main wear patterns. At the rapid wear stage, the SEM and EDS results showed that the adhered elements of Inconel 718 alloy on the tool rake face such as Ni, Fe and Cr accelerated the tool wear rate. Meanwhile, it was found that the chip morphology was serrated type under ultra high speed cutting condition, furthermore, the tendency of serration of the chip increased with the increase in cutting speed and feed rate.


Sign in / Sign up

Export Citation Format

Share Document