scholarly journals The spatial domain of wildfire risk and response in the wildland urban interface in Sydney, Australia

2013 ◽  
Vol 13 (12) ◽  
pp. 3385-3393 ◽  
Author(s):  
O. F. Price ◽  
R. A. Bradstock

Abstract. In order to quantify the risks from fire at the wildland urban interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of the 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire's weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting >2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances >10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). Overall, 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.

2013 ◽  
Vol 1 (5) ◽  
pp. 4539-4564
Author(s):  
O. F. Price ◽  
R. A. Bradstock

Abstract. In order to quantify the risks from fire at the Wildland Urban Interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting more than 2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances further than 10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.


2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.


2009 ◽  
Vol 14 (2) ◽  
Author(s):  
Anette Hylen Ranhoff

<span style="font-size: x-small; font-family: TimesNewRomanPSMT;"><span style="font-size: x-small; font-family: TimesNewRomanPSMT;"><p align="left">I fjor sommer ble Europa rammet av en hetebølge og tusenvis av eldre mennesker døde. Sammenhengen mellom helsetilstand og påvirkning av klima er kompleks og medisinske, sosiale og miljømessige faktorer er involvert. Imidlertid er hete- og kulderelaterte sykdommer, skade og død i høy grad mulig å forebygge, og det er behov for å analysere denne situasjonen og andre ekstreme værsituasjoner for å kunne sikre helsen til eldre personer ved liknede hendelser i fremtiden.   Artikkelen gir en oversikt over litteratur som omhandler sykelighet og dødelighet som følge av ekstreme værforhold: hete, kulde og situasjoner der transport, elektrisitet og andre leveranser er begrenset, som etter en orkan, enorme snøfall eller liknende. Sammenhenger mellom sykelighet, dødelighet og temperatur i alminnelighet bli også omtalt, med spesielt fokus på de eldre.            </p><p align="left">Eldre som lever alene og er sosialt isolerte, og spesielt de som har funksjonshemning eller kognitiv svikt har høyest risiko for sykdom, skade og død i ekstreme værsituasjoner. Dette kan trolig i stor grad forebygges. Det anbefales at alle kommuner har kriseplaner for naturkatastrofer og ekstreme værsituasjoner som spesielt inneholder tiltak rettet mot sårbare eldre. Planene bør inneholde generell alarmering og informasjon samt systemer for oppsøkende virksomhet overfor risikogrupper.</p><p align="left"> </p><span style="font-size: x-small; font-family: TimesNewRomanPSMT;"><span style="font-size: x-small; font-family: TimesNewRomanPSMT;"><p>The 2003 heat wave in Europe was responsible for the deaths of thousands of elderly people. Heat- and cold-related illnesses, injuries and deaths are supposed to be largely preventable, and it is a need for analysing this situation and other situations with extreme weather conditions where elderly people are believed to be particularly vulnerable</p><p>This article is a review of the literature concerning morbidity and mortality in extreme weather conditions like heat, cold and situations where transportation, electricity, and other supplies are limited as a consequence of extreme weather such as after a hurricane or an enormous snowfall. Associations between mortality, morbidity and temperature in general are also discussed with focus on the elderly population<strong>. </strong>after a hurricane or an enormous snowfall. The frailest elderly are at the highest risk. In situati The elderly are at high risk for illnesses, injuries and death in extreme weather conditions. There are numerous reports from heat waves, but also cold-related problems are well documented. Other risk factors are disability, cognitive impairment, chronic disease, the use of special drugs and social isolation. Many risk factors are common for heat-, and cold-related problems, and also for other situations like<strong> </strong>ons with extreme weather conditions, we recommend local and central authorities to have emergency plans with special adaptations to the needs of elderly people and other vulnerable groups. These plans should include general warning and information and systems for preventive visits to high-risk groups.</p>. </span></span></span></span>


2020 ◽  
Vol 29 (5) ◽  
pp. 427 ◽  
Author(s):  
T. D. Penman ◽  
B. A. Cirulis

Fire-management agencies invest significant resources to reduce the impacts of future fires. There has been increasing public scrutiny over how agencies allocate fire-management budgets and, in response, agencies are looking to use quantitative risk-based approaches to make decisions about expenditure in a more transparent manner. Advances in fire-simulation software and computing capacity of fire-agency staff have meant that fire simulators have been increasingly used for quantitative fire-risk analysis. Here we analyse the cost trade-offs of future fire management in the Australian Capital Territory (ACT) and surrounding areas by combining fire simulation with Bayesian Decision Networks. We compare potential future-management approaches considering prescribed burning, suppression and fire exclusion. These data combined costs of treatment and impacts on assets to undertake a quantitative risk analysis. The proposed approach for fuel treatment in ACT and New South Wales (NSW) provided the greatest reduction in risk and the most cost-effective approach to managing fuels in this landscape. Past management decisions have reduced risk in the landscape and the legacy of these treatments will last for at least 3 years. However, an absence of burning will result in an increased risk from fire in this landscape.


Fire ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 27 ◽  
Author(s):  
David Bowman ◽  
Lori Daniels ◽  
Fay Johnston ◽  
Grant Williamson ◽  
W. Jolly ◽  
...  

Sustainable fire management has eluded all industrial societies. Given the growing number and magnitude of wildfire events, prescribed fire is being increasingly promoted as the key to reducing wildfire risk. However, smoke from prescribed fires can adversely affect public health. We propose that the application of air quality standards can lead to the development and adoption of sustainable fire management approaches that lower the risk of economically and ecologically damaging wildfires while improving air quality and reducing climate-forcing emissions. For example, green fire breaks at the wildland–urban interface (WUI) can resist the spread of wildfires into urban areas. These could be created through mechanical thinning of trees, and then maintained by targeted prescribed fire to create biodiverse and aesthetically pleasing landscapes. The harvested woody debris could be used for pellets and other forms of bioenergy in residential space heating and electricity generation. Collectively, such an approach would reduce the negative health impacts of smoke pollution from wildfires, prescribed fires, and combustion of wood for domestic heating. We illustrate such possibilities by comparing current and potential fire management approaches in the temperate and environmentally similar landscapes of Vancouver Island in British Columbia, Canada and the island state of Tasmania in Australia.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1241
Author(s):  
Ming-Hsi Lee ◽  
Yenming J. Chen

This paper proposes to apply a Markov chain random field conditioning method with a hybrid machine learning method to provide long-range precipitation predictions under increasingly extreme weather conditions. Existing precipitation models are limited in time-span, and long-range simulations cannot predict rainfall distribution for a specific year. This paper proposes a hybrid (ensemble) learning method to perform forecasting on a multi-scaled, conditioned functional time series over a sparse l1 space. Therefore, on the basis of this method, a long-range prediction algorithm is developed for applications, such as agriculture or construction works. Our findings show that the conditioning method and multi-scale decomposition in the parse space l1 are proved useful in resisting statistical variation due to increasingly extreme weather conditions. Because the predictions are year-specific, we verify our prediction accuracy for the year we are interested in, but not for other years.


Author(s):  
Rahman Ashrafi ◽  
Meysam Amirahmadi ◽  
Mohammad Tolou-Askari ◽  
Vahid Ghods

2021 ◽  
pp. 110900
Author(s):  
Jian Cheng ◽  
Hilary Bambrick ◽  
Laith Yakob ◽  
Gregor Devine ◽  
Francesca D. Frentiu ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


Sign in / Sign up

Export Citation Format

Share Document