scholarly journals Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

2018 ◽  
Vol 18 (2) ◽  
pp. 515-529 ◽  
Author(s):  
Miguel M. Pinto ◽  
Carlos C. DaCamara ◽  
Isabel F. Trigo ◽  
Ricardo M. Trigo ◽  
K. Feridun Turkman

Abstract. We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004–2016) and validated against the period of January–September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the “extreme” class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

2017 ◽  
Author(s):  
Miguel M. Pinto ◽  
Carlos C. DaCamara ◽  
Isabel F. Trigo ◽  
Ricardo M. Trigo ◽  
K. Feridun Turkman

Abstract. We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe aiming to improve state-of-the art modelling skills for classes of high fire danger. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological information by means of the Canadian Fire Weather Index (FWI) and is estimated using a Daily Model based on a Generalized Pareto distribution. Five classes of fire danger are then associated to daily probability estimated by the Daily Model. The model is calibrated using seven years of data (2010–2016) and validated against the period of January–August 2017. Results obtained show that about 80 % of events releasing daily energy above 10 000 GJ belong to the Extreme class of fire danger, a considerably high fraction that is more than the double of the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.


2014 ◽  
Vol 23 (7) ◽  
pp. 945 ◽  
Author(s):  
Carlos C. DaCamara ◽  
Teresa J. Calado ◽  
Sofia L. Ermida ◽  
Isabel F. Trigo ◽  
Malik Amraoui ◽  
...  

Here we present a procedure that allows the operational generation of daily maps of fire danger over Mediterranean Europe. These are based on integrated use of vegetation cover maps, weather data and fire activity as detected by remote sensing from space. The study covers the period of July–August 2007 to 2009. It is demonstrated that statistical models based on two-parameter generalised Pareto (GP) distributions adequately fit the observed samples of fire duration and that these models are significantly improved when the Fire Weather Index (FWI), which rates fire danger, is integrated as a covariate of scale parameters of GP distributions. Probabilities of fire duration exceeding specified thresholds are then used to calibrate FWI leading to the definition of five classes of fire danger. Fire duration is estimated on the basis of 15-min data provided by Meteosat Second Generation (MSG) satellites and corresponds to the total number of hours in which fire activity is detected in a single MSG pixel during one day. Considering all observed fire events with duration above 1h, the relative number of events steeply increases with classes of increasing fire danger and no fire activity was recorded in the class of low danger. Defined classes of fire danger provide useful information for wildfire management and are based on the Fire Risk Mapping product that is being disseminated on a daily basis by the EUMETSAT Satellite Application Facility on Land Surface Analysis.


2021 ◽  
Author(s):  
Catarina Alonso ◽  
Célia Gouveia

<p>Forest fires have always been present in Mediterranean ecosystems; as such, they constitute a major ecological and socioeconomical issue. Despite being mostly of anthropogenic origin, the influence of the recent increase in temperature and evapotranspiration is associated with an increase in the frequency and severity of wildfires in the region. Large fires are promoted by the occurrence of high temperatures and episodes of drought that may lead to total burnt areas being several times larger than the average, such as the burnt areas in Portugal in 2003 and 2005, and Greece in 2007. The fire season of 2017 in Portugal has been catastrophic by most accounts. The authorities reported more than 100 human fatalities, with about 500.000ha of estimated burnt area, which corresponds to the maximum record since 1980. </p><p>The Land Surface Analysis Satellite Applications Facility (LSA SAF) from EUMETSAT operationally disseminates a set of fire related products for the Mediterranean region. The Fire Radiative Power product (FRP-PIXEL) is delivered in near real-time since 2004 with a 15-min temporal resolution. In this work, daily Fire Radiative Energy (FRE) is computed for the Mediterranean region. The Fire Risk Map (FRM) product combines information from the operational forecasts from ECMWF and vegetation state from SEVIRI to derive forecasts of the risk of fire for the Mediterranean region. The FRM algorithm computes the daily values of the set of components of the Canadian Forest Fire Weather Index System (CFFWIS) for Mediterranean Europe, together with levels of fire danger associated with probabilities of occurrence of fires exceeding specified magnitudes. The FRM can be an important tool to support the management of forest fires and the decision making of prescribed burning within the framework of agricultural and forest management practices.</p><p>This work aims to assess the performance of the FRM product during 2020 over the Mediterranean region using FRE estimates. In particular, we aim to evaluate if the more severe and intense fires occurred in areas of high fire risk and high probability of occurrence of extreme fires, as obtained using FRM products. This analysis is made for different countries in the Mediterranean Basin, namely Portugal, Spain, Italy, and Greece. Results reveal a good performance of FRM over the Mediterranean region during 2020; however, better results were observed for the fire season in the Iberian Peninsula than for Italy.</p><p><strong>Acknowledgements:</strong> This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under projects FIRECAST (PCIF/GRF/0204/2017) and IMPECAF (PTDC/CTA-CLI/28902/2017).</p>


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 759 ◽  
Author(s):  
Torgrim Log

Research highlights: Moisture diffusion coefficients for stems and branches of degenerated Calluna vulgaris L. have been obtained and a mathematical model for the drying process has been developed and validated as an input to future fire danger modeling. Background and objectives: In Norway, several recent wildland–urban interface (WUI) fires have been attributed to climate changes and accumulation of elevated live and dead biomass in degenerated Calluna stands due to changes in agricultural activities, i.e., in particular abandonment of prescribed burning for sheep grazing. Prescribed burning is now being reintroduced in these currently fire prone landscapes. While available wildfire danger rating models fail to predict the rapidly changing fire hazard in such heathlands, there is an increasing need for an adapted fire danger model. The present study aims at determining water diffusion coefficients and develops a numerical model for the drying process, paving the road for future fire danger forecasts and prediction of safe and efficient conditions for prescribed burning. Materials and methods: Test specimens (3–6 mm diameter) of dead Calluna stems and branches were rain wetted 48 h and subsequently placed in a climate chamber at 20 °C and 50% relative humidity for mass loss recordings during natural convection drying. Based on the diameter and recorded mass versus time, diffusion coefficients were obtained. A numerical model was developed and verified against recoded mass loss. Results: Diffusion coefficients were obtained in the range 1.66–10.4 × 10−11 m2/s. This is quite low and may be explained by the very hard Calluna “wood”. The large span may be explained by different growth conditions, insect attacks and a varying number of years of exposure to the elements after dying. The mathematical model described the drying process well for the specimens with known diffusion coefficient. Conclusions: The established range of diffusion coefficients and the developed model may likely be extended for forecasting moisture content of degenerated Calluna as a proxy for fire danger and/or conditions for efficient and safe prescribed burning. This may help mitigate the emerging fire risk associated with degenerated Calluna stands in a changing climate.


2019 ◽  
Vol 16 (11) ◽  
pp. 2369-2408 ◽  
Author(s):  
Raia Silvia Massad ◽  
Juliette Lathière ◽  
Susanna Strada ◽  
Mathieu Perrin ◽  
Erwan Personne ◽  
...  

Abstract. The atmosphere and the land surface interact in multiple ways, for instance through the radiative-energy balance, the water cycle or the emission and deposition of natural and anthropogenic compounds. By modifying the land surface, land use and land cover changes (LULCCs) and land management changes (LMCs) alter the physical, chemical, and biological processes of the biosphere and therefore all land–atmosphere interactions, from local to global scales. Through socio-economic drivers and regulatory policies adopted at different levels (local, regional, national, or supranational), human activities strongly interfere in the land–atmosphere interactions, and those activities lead to a patchwork of natural, semi-natural, agricultural, urban, and semi-urban areas. In this context, urban and peri-urban areas, which have a high population density, are of particular attention since land transformation can lead to important environmental impacts and affect the health and life of millions of people. The objectives of this review are to synthesize the existing experimental and modelling works that investigate physical, chemical, and/or biogeochemical interactions between land surfaces and the atmosphere, therefore potentially impacting local/regional climate and air quality, mainly in urban or peri-urban landscapes at regional and local scales. The conclusions we draw from our synthesis are the following. (1) The adequate temporal and spatial description of land use and land management practices (e.g. areas concerned, type of crops, whether or not they are irrigated, quantity of fertilizers used and actual seasonality of application) necessary for including the effects of LMC in global and even more in regional climate models is inexistent (or very poor). Not taking into account these characteristics may bias the regional projections used for impact studies. (2) Land–atmosphere interactions are often specific to the case study analysed; therefore, one can hardly propose general solutions or recommendations. (3) Adaptation strategies, proposed after climatic impacts on the targeted resource have been derived, are often biased as they do not account for feedbacks on local/regional climate. (4) There is space for considering atmospheric chemistry, through land–atmosphere interactions, as a factor for land management, helping to maintain air quality and supporting ecosystem functioning. (5) There is a lack of an integrated tool, which includes the many different processes of importance in an operational model, to test different land use or land management scenarios at the scale of a territory.


2007 ◽  
Vol 16 (3) ◽  
pp. 306 ◽  
Author(s):  
Christos Vasilakos ◽  
Kostas Kalabokidis ◽  
John Hatzopoulos ◽  
George Kallos ◽  
Yiannis Matsinos

Prevention is one of the most important stages in wildfire and other natural hazard management regimes. Fire danger rating systems have been adopted by many developed countries dealing with wildfire prevention and pre-suppression planning, so that civil protection agencies are able to define areas with high probabilities of fire ignition and resort to necessary actions. This present paper presents a fire ignition risk scheme, developed in the study area of Lesvos Island, Greece, that can be an integral component of a quantitative Fire Danger Rating System. The proposed methodology estimates the geo-spatial fire risk regardless of fire causes or expected burned area, and it has the ability of forecasting based on meteorological data. The main output of the proposed scheme is the Fire Ignition Index, which is based on three other indices: Fire Weather Index, Fire Hazard Index, and Fire Risk Index. These indices are not just a relative probability for fire occurrence, but a rather quantitative assessment of fire danger in a systematic way. Remote sensing data from the high-resolution QuickBird and the Landsat ETM satellite sensors were utilised in order to provide part of the input parameters to the scheme, while Remote Automatic Weather Stations and the SKIRON/Eta weather forecasting system provided real-time and forecasted meteorological data, respectively. Geographic Information Systems were used for management and spatial analyses of the input parameters. The relationship between wildfire occurrence and the input parameters was investigated by neural networks whose training was based on historical data.


2021 ◽  
Author(s):  
Anastasios Rovithakis ◽  
Apostolos Voulgarakis ◽  
Manolis Grillakis ◽  
Christos Giannakopoulos ◽  
Anna Karali

<p>The Canadian Fire Weather Index (FWI) is a meteorologically based index designed initially to be used in Canada but it can also be used worldwide, including the Mediterranean, to estimate fire danger in a generalized fuel type based solely on weather observations. The four weather variables are measured and used as inputs to the FWI (rain accumulated over 24 h, temperature, relative humidity, and wind speed) are generally taken daily at noon local standard time.</p><p>Recent studies have shown that temperature and precipitation in the Mediterranean, and more specifically in Greece are expected to change, indicating longer and more intense summer droughts that even extend out of season. In connection to this, the frequency of forest fire occurrence and intensity is on the rise. In the present study, the FWI index is used in order to assess changes in future fire danger conditions.</p><p>To represent meteorological conditions, regional EURO-CORDEX climate model simulations over the Mediterranean and mainly Greece at a spatial resolution of 11 km, were utilized. In order to assess the impact of future climate change, we used two Representative Concentration Pathway (RCP) scenarios consisting of an optimistic emission scenario where emissions peak and decline beyond 2020 (RCP2.6) and a pessimistic scenario where emissions continue to rise throughout the century (RCP8.5).  We compare the FWI projections for two future time periods, 2021-2050 and 2071-2100 with reference to the historical time period 1971-2000. Based on the critical fire risk threshold values that have been established in previous studies for the area of Greece, the days with critical fire risk were calculated for different Greek domains.</p>


2013 ◽  
Vol 1 (6) ◽  
pp. 6291-6326
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
I. R. Urbieta ◽  
...  

Abstract. Understanding how fire-weather danger indices changed in the past, and detecting how changes affected forest fire activity is important in changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis datasets, ERA 40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest-fires statistical data from Greece and Spain to relate fire danger and fire activity. There is no obvious trend in fire danger for the time period covered by ERA 40 (1960–1999) whereas for the period 1980–2012 covered by ERA Interim, the mean FWI and the number of high fire risk days shows an increasing trend which is significant at the 99% confidence level for South and East Europe. The cross-correlation calculated at national level in Greece and Spain between mean yearly area burned and mean FWI of the current season is of the order 0.5–0.6, and demonstrates the importance of the fire-season weather on forest fires. Our results show that, fire risk is multifaceted, and factors like changes in fire fighting capacity, ignition patterns, or landscapes might have played a role in forest fires trends. However, weather trends remain as important determinants of forest fires.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Qingting Li ◽  
Orhan Altan ◽  
Mobushir Riaz Khan ◽  
...  

Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such conditions deviate from those encountered during the fire season. Prescribed burns mostly affect surface fuels and understory vegetation, an outcome markedly different when compared to wildfires. Data on prescribed burning are crucial for evaluating whether land management targets have been reached. This research developed a methodology to quantify the effects of prescribed burns using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern Australia. C-band SAR datasets were specifically used to statistically explore changes in radar backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH) SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in vegetation structure.


Sign in / Sign up

Export Citation Format

Share Document