scholarly journals Potential Impact of Landslide and Debris Flow on Climate Extreme – A Case Study of Xindian Watershed in Taiwan

2017 ◽  
Author(s):  
Shih-Chao Wei ◽  
Hung-Ju Shih ◽  
Hsin-Chi Li ◽  
Ko-Fei Liu

Abstract. Sedimentary produced and transported in mountainous area under extreme rainfall by climate change is a challenged issue in recent years, especially in a watershed scale. The scenario approach with coupled simulation by different models could be one of a solution for further discussion under warming climate. With properly model selection, the simulation of projected rainfall, landslide, and debris flow are integrated by fully connection between models. Moreover, a case in Xindian watershed upstream the capital of Taiwan is chose for studying, and two extreme scenarios in late 20th and late 21st century are selected for comparison on changing climate. With sequent simulation, the chain process and compounded disaster can be considered in our analysis. The potential effects of landslides and debris flows are compared between current and future, and the likely impact in selected watershed are discussed under climate extreme. Result shows the unstable sediment volume would enlarge 29 % in terms of projected extreme event. The river bed may have strong variation by serious debris flow and increase about 10 % elevation in main channel. These findings also highlight the increasing risk in stable water supply, isolated village effect, and other secondary disaster in this watershed. A practical reference could be provided by some critical information in our result for long-term adapted strategies.

2021 ◽  
Author(s):  
Anand Kumar Pandey ◽  
Kotluri Sravan Kumar ◽  
Virendra Mani Tiwari ◽  
Puranchand Rao ◽  
Kirsten Cook ◽  
...  

<p>The slope instability and associated mass wasting are among the most efficient surface gradation processes in the bedrock terrain that produce dramatic landscape change and associated hazards. The wedge failure in periglacial Higher Himalaya terrain on 7th February in Chamoli, Uttarakhand (India) produced >1.5 km high rock avalanche, which amalgamated with the glacial debris on the frozen river bed produced massive debris flow along the high gradient Rishi Ganga catchment. The high-velocity debris flow and a surge of high flood led to extensive loss of life and infrastructures and issuing the extreme event flood warning along the Alakananda-Ganga river, despite there was no immediate extreme climatic event. The affected region is the locus of extreme mass wasting events associated with Glacial Lake Outburst Flood (GLOF) and Landslide Lake Outburst Flood (LLOF) in the recent past. We analyzed the landscape to understand its control on the 7th February 2021 Rishi Ganga event and briefly discuss other significant events in the adjoining region e.g. 1893/1970 Gohna Tal/Lake LLOF and 2013-Uttarakhand events in Chamoli, which have significance in understanding the surface processes in Higher Himalayan terrain.</p>


2011 ◽  
Vol 123 (1-2) ◽  
pp. 83-90 ◽  
Author(s):  
Chi-Wen Chang ◽  
Ping-Sien Lin ◽  
Cheng-Lin Tsai

2018 ◽  
Vol 18 (12) ◽  
pp. 3283-3296
Author(s):  
Shih-Chao Wei ◽  
Hsin-Chi Li ◽  
Hung-Ju Shih ◽  
Ko-Fei Liu

Abstract. The production and transportation of sediment in mountainous areas caused by extreme rainfall events that are triggered by climate change is a challenging problem, especially in watersheds. To investigate this issue, the present study adopted the scenario approach coupled with simulations using various models. Upon careful model selection, the simulation of projected rainfall, landslide, debris flow, and loss assessment was integrated by connecting the models' input and output. The Xindian watershed upstream from Taipei, Taiwan, was identified and two extreme rainfall scenarios from the late 20th and 21st centuries were selected to compare the effects of climate change. Using sequence simulations, the chain reaction and compounded disaster were analysed. Moreover, the potential effects of slope land hazards were compared for the present and future, and the likely impacts in the selected watershed areas were discussed with respect to extreme climate. The results established that the unstable sediment volume would increase by 28.81 % in terms of the projected extreme event. The total economic losses caused by the chain impacts of slope land disasters under climate change would be increased to USD 358.25 million. Owing to the geographical environment of the Taipei metropolitan area, the indirect losses of a water supply shortage caused by slope land disasters would be more serious than direct losses. In particular, avenues to ensure the availability of the water supply will be the most critical disaster prevention topic in the event of a future slope land disaster. The results obtained from this study are expected to be beneficial because they provide critical information for devising long-term strategies to combat the impacts of slope land disasters.


2020 ◽  
Author(s):  
Ming-Hsi Lee ◽  
Kun-Feng Chiang ◽  
Kuang-Jung Tsai

<p>There are almost 24% of total remoted mountainous communities located in Chiayi, Tainan, Kaohsiung and Pingtung counties/cities of southern Taiwan. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe environmental disasters such as landslides, debris flows, flooding and sediment disasters in southern Taiwan. The maximum rainfall of typhoon Morakot in August 2009 was approaching 3,000 mm during 4 days in mountainous area of Chiayi city. There are 359 landslides occurred nearby the remoted mountainous communities in the study area during the typhoon event. The landslide area was over 900 ha.</p><p>The potential assessments of environmental disasters for 38 remoted mountainous communities nearby the riverbank were analyzed. The landslide areas nearby the 38 communities in last 10 years (2007-2016) were identified. The numerical models (HEC-RAS, CCHE-2D and FLO-2D) were used to simulate the flooding level, scouring and deposition of river bed and the influence area of debris-flow occurrence under different return periods (25, 50 and 100 years). The results show that there are 5, 4 and 14 high potential communities of landslide, flooding and debris flow disasters, respectively. The results proposed by this study can provide the disaster risk management of administrative decisions to lessen the impacts of environmental disasters for remoted mountainous communities nearby the riverbank in southern Taiwan under climate change.</p>


2018 ◽  
Author(s):  
Shih-Chao Wei ◽  
Hsin-Chi Li ◽  
Hung-Ju Shih ◽  
Ko-Fei Liu

Abstract. The production and transportation of sediment in mountainous areas caused by extreme rainfall events triggered by climate change is a challenging problem, especially in watersheds. To investigate this issue, the present study adopted the scenario approach coupled with simulations using various models. Upon careful model selection, the simulation of projected rainfall, landslide, debris flow, and loss assessment were integrated by connecting the models' input and output. The Xindian watershed upstream from Taipei, Taiwan, was identified and two extreme rainfall scenarios from the late 20th and 21st centuries were selected to compare the effects of climate change. Using sequence simulations, the chain reaction and compounded disaster were analysed. Moreover, the potential effects of slope land hazards were compared between the present and future, and the likely impacts in the selected watershed areas were discussed with respect to extreme climate. The results established that the unstable sediment volume would increase by 28.81 % in terms of the projected extreme event. The total economic losses caused by the chain impacts of slope land disasters under climate change would be increased to US$ 358.25 million. Owing to the geographical environment of the Taipei metropolitan area, the indirect losses of water supply shortage caused by slope land disasters would be more serious than direct losses. In particular, avenues to ensure the availability of water supply will be the most critical disaster prevention topic in the event of a future slope land disaster. The results obtained from this study are expected to be beneficial, because they provide critical information for devising long-term strategies to combat the impacts of slope land disasters.


2021 ◽  
Vol 27 (1) ◽  
pp. 3-27
Author(s):  
Jeremy T. Lancaster ◽  
Brian J. Swanson ◽  
Stefani G. Lukashov ◽  
Nina S. Oakley ◽  
Jacob B. Lee ◽  
...  

ABSTRACT The post–Thomas Fire debris flows of 9 January 2018 killed 23 people, damaged 558 structures, and caused severe damage to infrastructure in Montecito and Carpinteria, CA. U.S. Highway 101 was closed for 13 days, significantly impacting transportation and commerce in the region. A narrow cold frontal rain band generated extreme rainfall rates within the western burn area, triggering runoff-driven debris flows that inundated 5.6 km2 of coastal land in eastern Santa Barbara County. Collectively, this series of debris flows is comparable in magnitude to the largest documented post-fire debris flows in the state and cost over a billion dollars in debris removal and damages to homes and infrastructure. This study summarizes observations and analyses on the extent and magnitude of inundation areas, debris-flow velocity and volume, and sources of debris-flow material on the south flank of the Santa Ynez Mountains. Additionally, we describe the atmospheric conditions that generated intense rainfall and use precipitation data to compare debris-flow source areas with spatially associated peak 15 minute rainfall amounts. We then couple the physical characterization of the event with a compilation of debris-flow damages to summarize economic impacts.


2021 ◽  
Author(s):  
◽  
Albert Edward Frampton

<p>In 2011, Waimarama received 80% of its annual rainfall in 48 hours. This extreme event with a return period of >100 years caused saturated hillslopes to collapse forming 100s of shallow landslides in the Puhokio Valley. This study collected soil samples from 54 exposed slip scarp horizons for laboratory analysis of soil mechanical properties. Field measurements of slip and slope angles, length, width and depth to determine that 23,212m³ of sediment was volume lost, from the 54 landslides. The field and lab measurements were used to generate a coherent understanding of landsliding at Waimarama. Laboratory analysis for liquid limits water content showed a high of 88.5% to a low of 18.8% and plastic limit water content had a high of 51% in the A horizon (organics) and low of 16.1%. Specific gravity also indicated a high reading 1.74 g/cm³ with a low of 1.16 g/cm³. The A horizon was able to tolerate high levels of water content in most tests, while the B horizon was capable of coping with some increase in water content. The C horizon was only able to handle low volumes of water, and was the main initiator of regolith collapse. The laboratory results indicated high saturation levels within the horizons of weak lithology of marine regolith that over caps impervious marine bedrock. The main cause for hillslope collapse and exposure of multiple translational and debris flow landslides was extreme saturation. However, towards the height of the rainfall event a 4.5 magnitude earthquake was recorded with unknown collateral consequences. Most slip locations were found in the aspects of east, south-east, west, and north-west, and on slope angles 15 -25°. The study confirmed previous surveys that regolith depth 80-100cm on impervious sandstone, siltstone/mudstone, when saturated over lengthy wet spells or from extreme precipitation, will collapse. In addition to the physical geographic study a survey was included to record individual and family accounts of the weather phenomenon. A questionnaire was prepared with specific questions that required yes or no answers. These questions dealt with loss of buildings, loss of land, animals, financial loss and recovery, economic loss, insurance and mitigation plans. The most affected were farmers and the next affected were householders while the holiday park was the worst affected of small businesses. Insurance was a significant help in most recoveries. Land rehabilitation was mitigated with new plantings and some aerial sowing, otherwise many slips were left to revegetate naturally. Economic and financial loss was severe for most farmers, due to pasture loss and animal relocation. Extreme rainfall causes slips that affect humans, but they can be mitigated. The Waimarama event is one of many events that can happen countrywide, the results can be a disastrous loss of personal, economic and financial assets, loss of infrastructure, including roading, bridges and communication. These are factors that many people and communities only realise when it happens to them. Mitigation against such events might include adequate insurance and knowledge of what to do, and where to go should an event happen unexpectedly and without warning.</p>


2014 ◽  
Vol 711 ◽  
pp. 388-391
Author(s):  
Ji Wei Xu ◽  
Ming Dong Zhang ◽  
Mao Sheng Zhang

On July 9 2013, debris flows occurred around Longchi town with large scale and wide harm, which was a great threat to people's life and property as well as reconstruction work. Debris flow ditch in the surrounding town was studied. This paper focused on loose materials, topography and rainfall characteristics, and explored the formation mechanism of debris flow in Longchi town. The result shows that: a small catchment area in valleys also have the risk of large range of accumulation of debris flow, the debris flow is caused by a lot of loose materials in mountains after earthquake and extreme rainfall. Research results contribute to a better understanding of trigger condition of debris flow after earthquake.


Landslides ◽  
2020 ◽  
Vol 17 (12) ◽  
pp. 2795-2809 ◽  
Author(s):  
Erin K. Bessette-Kirton ◽  
Jeffrey A. Coe ◽  
William H. Schulz ◽  
Corina Cerovski-Darriau ◽  
Mason M. Einbund

Abstract Mobility is an important element of landslide hazard and risk assessments yet has been seldom studied for shallow landslides and debris flows in tropical environments. In September 2017, Hurricane Maria triggered > 70,000 landslides across Puerto Rico. Using aerial imagery and a lidar digital elevation model (DEM), we mapped and characterized the mobility of debris slides and flows in four different geologic materials: (1) mudstone, siltstone, and sandstone; (2) submarine basalt and chert; (3) marine volcaniclastics; and (4) granodiorite. We used the ratio of landslide-fall height (H) to travel length (L), H/L, to assess the mobility of landslides in each material. Additionally, we differentiated between landslides with single and multiple source areas and landslides that either did or did not enter drainages. Overall, extreme rainfall contributed to the mobility of landslides during Hurricane Maria, and our results showed that the mobility of debris slides and flows in Puerto Rico increased linearly as a function of the number of source areas that coalesced. Additionally, landslides that entered drainages were more mobile than those that did not. We found that landslides in soils developed on marine volcaniclastics were the most mobile and landslides in soils on submarine basalt and chert were the least mobile. While landslides were generally small (< 100 m2) and displayed a wide range of H/L values (0.1–2), coalescence increased the mobility of landslides that transitioned to debris flows. The high but variable mobility of landslides that occurred during Hurricane Maria and the associated hazards highlight the importance of characterizing and understanding the factors influencing landslide mobility in Puerto Rico and other tropical environments.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3451 ◽  
Author(s):  
Usman Salihu Lay ◽  
Biswajeet Pradhan ◽  
Zainuddin Bin Md Yusoff ◽  
Ahmad Fikri Bin Abdallah ◽  
Jagannath Aryal ◽  
...  

Cameron Highland is a popular tourist hub in the mountainous area of Peninsular Malaysia. Most communities in this area suffer frequent incidence of debris flow, especially during monsoon seasons. Despite the loss of lives and properties recorded annually from debris flow, most studies in the region concentrate on landslides and flood susceptibilities. In this study, debris-flow susceptibility prediction was carried out using two data mining techniques; Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) models. The existing inventory of debris-flow events (640 points) were selected for training 70% (448) and validation 30% (192). Twelve conditioning factors namely; elevation, plan-curvature, slope angle, total curvature, slope aspect, Stream Transport Index (STI), profile curvature, roughness index, Stream Catchment Area (SCA), Stream Power Index (SPI), Topographic Wetness Index (TWI) and Topographic Position Index (TPI) were selected from Light Detection and Ranging (LiDAR)-derived Digital Elevation Model (DEM) data. Multi-collinearity was checked using Information Factor, Cramer’s V, and Gini Index to identify the relative importance of conditioning factors. The susceptibility models were produced and categorized into five classes; not-susceptible, low, moderate, high and very-high classes. Models performances were evaluated using success and prediction rates where the area under the curve (AUC) showed a higher performance of MARS (93% and 83%) over SVR (76% and 72%). The result of this study will be important in contingency hazards and risks management plans to reduce the loss of lives and properties in the area.


Sign in / Sign up

Export Citation Format

Share Document