scholarly journals Modelling landslide hazard under global change: the case of a Pyrenean valley

2020 ◽  
Author(s):  
Séverine Bernardie ◽  
Rosalie Vandromme ◽  
Yannick Thiery ◽  
Thomas Houet ◽  
Marine Grémont ◽  
...  

Abstract. Several studies have shown that global changes have important impacts in mountainous areas, since they affect natural hazards induced by hydro-meteorological events such as landslides. To estimate the capacity of mountainous valleys to cope with landslide hazard under global change (climate change as well as climate- and human-induced land use change), it is necessary to evaluate the evolution of the different components that define this type of hazard: topography, geology and geotechnics, hydrogeology and land cover. The present study evaluates, through an innovative methodology, the influence of both vegetation cover and climate change on landslide hazard in a Pyrenean valley from the present to 2100. Once the invariant features of the studied area, such as geology and topography, were set, we first focused on assessing future land use changes through the construction of four prospective socioeconomic scenarios and their projection to 2040 and 2100. These inputs were then used to spatially model land use and land cover (LUCC) information to produce multi-temporal LUCC maps. Then, climate change inputs were used to extract the water saturation of the uppermost layers, according to two greenhouse gas emissions scenarios. The impacts of land use and climate change based on these scenarios were then used to modulate the hydro-mechanical model to compute the factor of safety (FoS) and the hazard levels over the considered area. The results demonstrate the influence of land use on slope stability through the presence and type of forest. The resulting changes are significant despite being small and dependent on future land use linked to the socioeconomic scenarios. In particular, a reduction in human activity results in an increase in slope stability; in contrast, an increase in anthropic activity leads to an opposite evolution in the region, with some reduction in slope stability. Climate change may also have a significant impact in some areas because of the increase in the soil water content; the results indicate a reduction in the FoS in a large part of the study area, depending on the landslide typology considered. Therefore, even if future forest growth leads to slope stabilization, the evolution of the groundwater conditions will lead to destabilization. These changes are not uniform over the area and are particularly significant under the most extreme climate scenario, RCP 8.5. Compared to the current period, the size of the area that is prone to deep landslides is higher in the future than the area prone to small landslides (both rotational and translational). On the other hand, the increase rate of areas prone to landslides is higher for the small landslide typology than for the deep landslide typology. Interestingly, the evolution of extreme events is related to the frequency of the highest water filling ratio. The results indicate that the occurrences of landslide hazards in the near future (2021–2050 period, scenario RCP 8.5) and far future (2071–2100 period, scenario RCP 8.5) are expected to increase by factors of 1.5 and 4, respectively.

2021 ◽  
Vol 21 (1) ◽  
pp. 147-169
Author(s):  
Séverine Bernardie ◽  
Rosalie Vandromme ◽  
Yannick Thiery ◽  
Thomas Houet ◽  
Marine Grémont ◽  
...  

Abstract. Several studies have shown that global changes have important impacts in mountainous areas, since they affect natural hazards induced by hydrometeorological events such as landslides. The present study evaluates, through an innovative method, the influence of both vegetation cover and climate change on landslide hazards in a Pyrenean valley from the present to 2100. We first focused on assessing future land use and land cover changes through the construction of four prospective socioeconomic scenarios and their projection to 2040 and 2100. Secondly, climate change parameters were used to extract the water saturation of the uppermost layers, according to two greenhouse gas emission scenarios. The impacts of land cover and climate change based on these scenarios were then used to modulate the hydromechanical model to compute the factor of safety (FoS) and the hazard levels over the considered area. The results demonstrate the influence of land cover on slope stability through the presence and type of forest. The resulting changes are statistically significant but small and dependent on future land cover linked to the socioeconomic scenarios. In particular, a reduction in human activity results in an increase in slope stability; in contrast, an increase in anthropic activity leads to an opposite evolution in the region, with some reduction in slope stability. Climate change may also have a significant impact in some areas because of the increase in the soil water content; the results indicate a reduction in the FoS in a large part of the study area, depending on the landslide type considered. Therefore, even if future forest growth leads to slope stabilization, the evolution of the groundwater conditions will lead to destabilization. The increasing rate of areas prone to landslides is higher for the shallow landslide type than for the deep landslide type. Interestingly, the evolution of extreme events is related to the frequency of the highest water filling ratio. The results indicate that the occurrences of landslide hazards in the near future (2021–2050 period, scenario RCP8.5) and far future (2071–2100 period, scenario RCP8.5) are expected to increase by factors of 1.5 and 4, respectively.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


Hydrology ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Kinati Chimdessa ◽  
Shoeb Quraishi ◽  
Asfaw Kebede ◽  
Tena Alamirew

In the Didessa river basin, which is found in Ethiopia, the human population number is increasing at an alarming rate. The conversion of forests, shrub and grasslands into cropland has increased in parallel with the population increase. The land use/land cover change (LULCC) that has been undertaken in the river basin combined with climate change may have affected the Didessa river flow and soil loss. Therefore, this study was designed to assess the impact of LULCC on the Didessa river flow and soil loss under historical and future climates. Land use/land cover (LULC) of the years 1986, 2001 and 2015 were independently combined with the historical climate to assess their individual impacts on river flow and soil loss. Further, the impact of future climates under Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) scenarios on river flow and soil loss was assessed by combining the pathways with the 2015 LULC. A physically based Soil and Water Assessment Tool (SWAT2012) model in the ArcGIS 10.4.1 interface was used to realize the purpose. Results of the study revealed that LULCC that occurred between 1986 and 2015 resulted in increased average sediment yield by 20.9 t ha−1 yr−1. Climate change under RCP2.6, RCP4.5 and RCP8.5 combined with 2015 LULC increased annual average soil losses by 31.3, 50.9 and 83.5 t ha−1 yr−1 compared with the 2015 LULC under historical climate data. It was also found that 13.4%, 47.1% and 87.0% of the total area may experience high soil loss under RCP2.6, RCP4.5 and RCP8.5, respectively. Annual soil losses of five top-priority sub catchments range from 62.8 to 57.7 per hectare. Nash Stuncliffe Simulation efficiency (NSE) and R2 values during model calibration and validation indicated good agreement between observed and simulated values both for flow and sediment yield.


2016 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 μg m−3 in northern China, but an increase in summertime PM2.5 by 6.0–8.0 μg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 μg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 μg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 μg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 μg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


Sign in / Sign up

Export Citation Format

Share Document