scholarly journals Electrical precursors of earthquakes in Aegean Sea during the last decade (1997–2007)

2008 ◽  
Vol 8 (1) ◽  
pp. 123-128 ◽  
Author(s):  
E. Dologlou ◽  
V. Hadjicontis ◽  
C. Mavromatou

Abstract. The purpose of this study is to investigate some properties of the Seismic Electric Signals (SES) that preceded large earthquakes which occurred in the Aegean Sea (24–27)° E, (37–40)° N, during the last decade. Our main interest is focused on the important parameter of the lead time Δt, which is the time difference between the occurrence of the earthquake and the detection of the associated SES signal. Two groups of lead times, a short (i.e. Δt~ some weeks) and a long one (Δt~ some months) have been observed. We examine whether this difference could be related to the regional tectonics. Furthermore the property of SES selectivity is discussed.

2011 ◽  
Vol 11 (6) ◽  
pp. 1599-1603 ◽  
Author(s):  
E. Dologlou

Abstract. The seismicity of the last 15 years in the Aegean Sea revealed that earthquakes (Mw > 5) with epicentres falling within the Sporades basin and the confined area north of Samos island were preceded by electric seismic signals (SES) with a remarkably long lead time. A possible explanation of this behaviour by means of specific tectonics and geodynamics which characterise these two regions, such as a significant small crustal thickness and a high heat flow rate, has been attempted. New data seem to strengthen the above hypothesis.


2011 ◽  
Vol 11 (12) ◽  
pp. 3093-3096 ◽  
Author(s):  
E. Dologlou

Abstract. Recent laboratory measurements on rocks under varying pressure lead to results which strengthen a model suggested by the author for the explanation of the power law relation that interconnects the lead time of Seismic Electric Signals and earthquake stress drop. In addition, recent applications of a thermodynamic model that interrelates the defect parameters in materials of geophysical interest and their bulk properties open a new window to further advance the aforementioned explanation.


2008 ◽  
Vol 8 (5) ◽  
pp. 977-983 ◽  
Author(s):  
E. Dologlou

Abstract. A number of Seismic Electric signals data have been accumulated during the last two decades that also includes the signals observed before the magnitude 6 class earthquakes that occurred in Greece very recently i.e., the first two months of 2008. Using all the available data we investigate whether a possible interconnection exists between the lead time of Seismic Electric Signals and the stress drop of subsequent earthquakes. We show that for "non thrust" earthquakes a power law relation emerges with an exponent value around 0.29, the possible physical meaning of which is discussed. This value is very close to the range of critical exponents that govern the fracture processes and is also comparable with the value of the slope, found much earlier by the VAN group, in the linear relation between the logarithm of the SES amplitude and the earthquake magnitude.


2013 ◽  
Vol 20 (3) ◽  
pp. 411-416 ◽  
Author(s):  
E. Dologlou

Abstract. Very recently the recordings of precursory seismic electric signals (SESsf) in the island of Kozu-shima, Japan, have been reported, and their interrelation with subsequent earthquakes was shown to be beyond chance. Almost simultaneously, the recording of SES activity in northern Greece was also reported, which was followed by a magnitude 5.7 earthquake in northern Greece. These facts strengthen the aspects on the precursory nature of SESs and also enable the updating of a previously found power law relation between the earthquake stress drop and the lead time of SESs. They led to an exponent of 0.330, which falls in the range of critical exponents for fracture. The stability of this exponent, which results from a large amount of data during the last 30 yr, is remarkable and may thus confirm features of criticality in the pre-seismic region after the SES emission. The underlying physics are also discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 383
Author(s):  
Ting Yu ◽  
Jichao Wang

Mean wave period (MWP) is one of the key parameters affecting the design of marine facilities. Currently, there are two main methods, numerical and data-driven methods, for forecasting wave parameters, of which the latter are widely used. However, few studies have focused on MWP forecasting, and even fewer have investigated it with spatial and temporal information. In this study, correlations between ocean dynamic parameters are explored to obtain appropriate input features, significant wave height (SWH) and MWP. Subsequently, a data-driven approach, the convolution gated recurrent unit (Conv-GRU) model with spatiotemporal characteristics, is utilized to field forecast MWP with 1, 3, 6, 12, and 24-h lead times in the South China Sea. Six points at different locations and six consecutive moments at every 12-h intervals are selected to study the forecasting ability of the proposed model. The Conv-GRU model has a better performance than the single gated recurrent unit (GRU) model in terms of root mean square error (RMSE), the scattering index (SI), Bias, and the Pearson’s correlation coefficient (R). With the lead time increasing, the forecast effect shows a decreasing trend, specifically, the experiment displays a relatively smooth forecast curve and presents a great advantage in the short-term forecast of the MWP field in the Conv-GRU model, where the RMSE is 0.121 m for 1-h lead time.


2011 ◽  
Vol 3 (2) ◽  
pp. 128-140 ◽  
Author(s):  
S. Hoekstra ◽  
K. Klockow ◽  
R. Riley ◽  
J. Brotzge ◽  
H. Brooks ◽  
...  

Abstract Tornado warnings are currently issued an average of 13 min in advance of a tornado and are based on a warn-on-detection paradigm. However, computer model improvements may allow for a new warning paradigm, warn-on-forecast, to be established in the future. This would mean that tornado warnings could be issued one to two hours in advance, prior to storm initiation. In anticipation of the technological innovation, this study inquires whether the warn-on-forecast paradigm for tornado warnings may be preferred by the public (i.e., individuals and households). The authors sample is drawn from visitors to the National Weather Center in Norman, Oklahoma. During the summer and fall of 2009, surveys were distributed to 320 participants to assess their understanding and perception of weather risks and preferred tornado warning lead time. Responses were analyzed according to several different parameters including age, region of residency, educational level, number of children, and prior tornado experience. A majority of the respondents answered many of the weather risk questions correctly. They seemed to be familiar with tornado seasons; however, they were unaware of the relative number of fatalities caused by tornadoes and several additional weather phenomena each year in the United States. The preferred lead time was 34.3 min according to average survey responses. This suggests that while the general public may currently prefer a longer average lead time than the present system offers, the preference does not extend to the 1–2-h time frame theoretically offered by the warn-on-forecast system. When asked what they would do if given a 1-h lead time, respondents reported that taking shelter was a lesser priority than when given a 15-min lead time, and fleeing the area became a slightly more popular alternative. A majority of respondents also reported the situation would feel less life threatening if given a 1-h lead time. These results suggest that how the public responds to longer lead times may be complex and situationally dependent, and further study must be conducted to ascertain the users for whom the longer lead times would carry the most value. These results form the basis of an informative stated-preference approach to predicting public response to long (>1 h) warning lead times, using public understanding of the risks posed by severe weather events to contextualize lead-time demand.


2008 ◽  
Vol 23 (2) ◽  
pp. 246-258 ◽  
Author(s):  
Kevin M. Simmons ◽  
Daniel Sutter

Abstract Conventional wisdom holds that improved tornado warnings will reduce tornado casualties, because longer lead times on warnings provide extra opportunities to alert residents who can then take precautions. The relationship between warnings and casualties is examined using a dataset of tornadoes in the contiguous United States between 1986 and 2002. Two questions are examined: Does a warning issued on a tornado reduce the resulting number of fatalities and injuries? Do longer lead times reduce casualties? It is found that warnings have had a significant and consistent effect on tornado injuries, with a reduction of over 40% at some lead time intervals. The results for fatalities are mixed. An increase in lead time up to about 15 min reduces fatalities, while lead times longer than 15 min increase fatalities compared with no warning. The fatality results beyond 15 min, however, depend on five killer tornadoes and consequently are not robust.


Sign in / Sign up

Export Citation Format

Share Document