scholarly journals Formulation of an ocean model for global climate simulations

Ocean Science ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 45-79 ◽  
Author(s):  
S. M. Griffies ◽  
A. Gnanadesikan ◽  
K. W. Dixon ◽  
J. P. Dunne ◽  
R. Gerdes ◽  
...  

Abstract. This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL) climate model used for the 4th IPCC Assessment (AR4) of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1) tripolar grid to resolve the Arctic Ocean without polar filtering, (2) partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3) more accurate equation of state, (4) three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5) incorporation of regional climatological variability in shortwave penetration, (6) neutral physics parameterization for representation of the pathways of tracer transport, (7) staggered time stepping for tracer conservation and numerical efficiency, (8) anisotropic horizontal viscosities for representation of equatorial currents, (9) parameterization of exchange with marginal seas, (10) incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11) transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux" methods, (12) parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

2005 ◽  
Vol 2 (3) ◽  
pp. 165-246 ◽  
Author(s):  
S. M. Griffies ◽  
A. Gnanadesikan ◽  
K. W. Dixon ◽  
J. P. Dunne ◽  
R. Gerdes ◽  
...  

Abstract. This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL) coupled climate model used for the 4th IPCC Assessment (AR4) of global climate change. In particular, it reviews elements of ocean climate models and how they are pieced together for use in a state-of-the-art coupled model. Novel issues are also highlighted, with particular attention given to sensitivity of the coupled simulation to physical parameterizations and numerical methods. Features of the model described here include the following: (1) tripolar grid to resolve the Arctic Ocean without polar filtering, (2) partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3) more accurate equation of state, (4) three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5) incorporation of regional climatological variability in shortwave penetration, (6) neutral physics parameterization for representation of the pathways of tracer transport, (7) staggered time stepping for tracer conservation and numerical efficiency, (8) anisotropic horizontal viscosities for representation of equatorial currents, (9) parameterization of exchange with marginal seas, (10) incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11) transport of water across the ocean free surface to eliminate unphysical "virtual tracer flux" methods, (12) parameterization of tidal mixing on continental shelves.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chris Wilson ◽  
Yevgeny Aksenov ◽  
Stefanie Rynders ◽  
Stephen J. Kelly ◽  
Thomas Krumpen ◽  
...  

AbstractThe Arctic Ocean is of central importance for the global climate and ecosystem. It is a region undergoing rapid climate change, with a dramatic decrease in sea ice cover over recent decades. Surface advective pathways connect the transport of nutrients, freshwater, carbon and contaminants with their sources and sinks. Pathways of drifting material are deformed under velocity strain, due to atmosphere-ocean-ice coupling. Deformation is largest at fine space- and time-scales and is associated with a loss of potential predictability, analogous to weather often becoming unpredictable as synoptic-scale eddies interact and deform. However, neither satellite observations nor climate model projections resolve fine-scale ocean velocity structure. Here, we use a high-resolution ocean model hindcast and coarser satellite-derived ice velocities, to show: that ensemble-mean pathways within the Transpolar Drift during 2004–14 have large interannual variability and that both saddle-like flow structures and the presence of fine-scale velocity gradients are important for basin-wide connectivity and crossing time, pathway bifurcation, predictability and dispersion.


1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2006 ◽  
Vol 19 (16) ◽  
pp. 3973-3987 ◽  
Author(s):  
Patrick Wetzel ◽  
Ernst Maier-Reimer ◽  
Michael Botzet ◽  
Johann Jungclaus ◽  
Noel Keenlyside ◽  
...  

Abstract The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the experiment with biology is derived from phytoplankton concentrations simulated with a marine biogeochemical model coupled online to the ocean model. Some of the changes in the upper ocean are similar to the results from previous studies that did not use interactive atmospheres, for example, amplification of the seasonal cycle; warming in upwelling regions, such as the equatorial Pacific and the Arabian Sea; and reduction in sea ice cover in the high latitudes. In addition, positive feedbacks within the climate system cause a global shift of the seasonal cycle. The onset of spring is about 2 weeks earlier, which results in a more realistic representation of the seasons. Feedback mechanisms, such as increased wind stress and changes in the shortwave radiation, lead to significant warming in the midlatitudes in summer and to seasonal modifications of the overall warming in the equatorial Pacific. Temperature changes also occur over land where they are sometimes even larger than over the ocean. In the equatorial Pacific, the strength of interannual SST variability is reduced by about 10%–15% and phase locking to the annual cycle is improved. The ENSO spectral peak is broader than in the experiment without biology and the dominant ENSO period is increased to around 5 yr. Also the skewness of ENSO variability is slightly improved. All of these changes lead to the conclusion that the influence of marine biology on the radiative budget of the upper ocean should be considered in detailed simulations of the earth’s climate.


2020 ◽  
Author(s):  
Casimir de Lavergne ◽  
Clément Vic ◽  
Gurvan Madec ◽  
Fabien Roquet ◽  
Amy Waterhouse ◽  
...  

<p>Vertical mixing is often regarded as the Achilles’ heel of ocean models. In particular, few models include a comprehensive and energy-constrained parameterization of mixing by internal ocean tides. Here, we present an energy-conserving mixing scheme which accounts for the local breaking of high-mode internal tides and the distant dissipation of low-mode internal tides. The scheme relies on four static two-dimensional maps of internal tide dissipation, constructed using mode-by-mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three-dimensional map of dissipation which compares well with available microstructure observations and with upper-ocean finestructure mixing estimates. Implemented in the NEMO global ocean model, the scheme improves the representation of deep water-mass transformation and obviates the need for a constant background diffusivity.</p>


2021 ◽  
pp. 1-47

Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud-radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free-atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid-to-high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.


2014 ◽  
Vol 7 (1) ◽  
pp. 211-224 ◽  
Author(s):  
A. Schmittner ◽  
G. D. Egbert

Abstract. Two modifications to an existing scheme of tidal mixing are implemented in the coarse resolution ocean component of a global climate model. First, the vertical distribution of energy flux out of the barotropic tide is determined using high resolution bathymetry. This shifts the levels of mixing higher up in the water column and leads to a stronger mid-depth meridional overturning circulation in the model. Second, the local dissipation efficiency for diurnal tides is assumed to be larger than that for the semi-diurnal tides poleward of 30°. Both modifications are shown to improve agreement with observational estimates of diapycnal diffusivities based on microstructure measurements and circulation indices. We also assess impacts of different spatial distributions of the barotropic energy loss. Estimates based on satellite altimetry lead to larger diffusivities in the deep ocean and hence a stronger deep overturning circulation in our climate model that is in better agreement with observation based estimates compared to those based on a tidal model.


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2007 ◽  
Vol 20 (24) ◽  
pp. 5946-5961 ◽  
Author(s):  
Jan Sedlacek ◽  
Jean-François Lemieux ◽  
Lawrence A. Mysak ◽  
L. Bruno Tremblay ◽  
David M. Holland

Abstract The granular sea ice model (GRAN) from Tremblay and Mysak is converted from Cartesian to spherical coordinates. In this conversion, the metric terms in the divergence of the deviatoric stress and in the strain rates are included. As an application, the GRAN is coupled to the global Earth System Climate Model from the University of Victoria. The sea ice model is validated against standard datasets. The sea ice volume and area exported through Fram Strait agree well with values obtained from in situ and satellite-derived estimates. The sea ice velocity in the interior Arctic agrees well with buoy drift data. The thermodynamic behavior of the sea ice model over a seasonal cycle at one location in the Beaufort Sea is validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets. The thermodynamic growth rate in the model is almost twice as large as the observed growth rate, and the melt rate is 25% lower than observed. The larger growth rate is due to thinner ice at the beginning of the SHEBA period and the absence of internal heat storage in the ice layer in the model. The simulated lower summer melt is due to the smaller-than-observed surface melt.


Sign in / Sign up

Export Citation Format

Share Document