scholarly journals The transient sensitivity of sea level rise

Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 181-186
Author(s):  
Aslak Grinsted ◽  
Jens Hesselbjerg Christensen

Abstract. Recent assessments from the Intergovernmental Panel on Climate Change (IPCC) imply that global mean sea level is unlikely to rise more than about 1.1 m within this century but will increase further beyond 2100. Even within the most intensive future anthropogenic greenhouse gas emission scenarios, higher levels are assessed to be unlikely. However, some studies conclude that considerably greater sea level rise could be realized, and a number of experts assign a substantially higher likelihood of such a future. To understand this discrepancy, it would be useful to have scenario-independent metrics that can be compared between different approaches. The concept of a transient climate sensitivity has proven to be useful to compare the global mean temperature response of climate models to specific radiative forcing scenarios. Here, we introduce a similar metric for sea level response. By analyzing the mean rate of change in sea level (not sea level itself), we identify a nearly linear relationship with global mean surface temperature (and therefore accumulated carbon dioxide emissions) both in model projections and in observations on a century scale. This motivates us to define the “transient sea level sensitivity” as the increase in the sea level rate associated with a given warming in units of meters per century per kelvin. We find that future projections estimated on climate model responses fall below extrapolation based on recent observational records. This comparison suggests that the likely upper level of sea level projections in recent IPCC reports would be too low.

2020 ◽  
Author(s):  
Aslak Grinsted ◽  
Jens Hesselbjerg Christensen

Abstract. Recent assessments from the Intergovernmental Panel on Climate Change implies that global mean sea level is unlikely to rise more than about 1.1 m within this century, but with further increase beyond 2100, even within the most intensive future anthropogenic carbon dioxide emission scenarios. However, some studies conclude that considerably greater sea level rise could be realized, and experts assign a substantially higher likelihood of such a future. To understand this discrepancy, it would be useful to have scenario independent metrics that can be compared between different approaches. The concept of a transient climate response has proven to be useful to compare the response of climate models. Here, we introduce a similar metric for sea level science. By analyzing mean rate of change in sea level (not sea level itself), we identify a near linear relationship with global mean surface temperature (and therefore accumulated carbon dioxide emissions) in both model projections, and in observations on a century time scale. This motivates us to define the Transient Sea Level Sensitivity as the increase in the sea level rate associated with a given warming in units of m/century/K. We find that model projections fall below extrapolation based on recent observational records. This comparison indicates that the likely upper level of sea level projections in recent IPCC reports would be too low.


2021 ◽  
Author(s):  
Svetlana Jevrejeva ◽  
Hindumathi Palanisamy ◽  
Luke Jackson

<p>Most of the excess energy stored in the climate system is taken up by the oceans leading to thermal expansion and sea level rise. Future sea level projections allow decision-makers to assess coastal risk, develop climate resilient communities and plan vital infrastructure in low- elevation coastal zones. Confidence in these projections depends on the ability of climate models to simulate the various components of future sea level rise. In this study we estimate the contribution from thermal expansion to sea level rise using the simulations of global mean thermosteric sea level from 15 available models in the Coupled Model Intercomparison Project Phase (CMIP) 6. We calculate a global mean thermosteric sea level rise of 18.8 cm [12.8 - 23.6 cm, 90% range] and 26.8 cm [18.6 - 34.6 cm, 90% range] for the period 2081–2100, relative to 1995-2014 for SSP245 and SSP585 scenarios respectively. In a comparison with a 20 model ensemble from CMIP5, the CMIP6 ensemble mean of future global mean thermosteric sea level rise (2014-2100) is higher for both scenarios and shows a larger variance. By contrast, for the period 1901-1990, global mean thermosteric sea level from CMIP6 has half the variance of that from CMIP5. Over the period 1940-2005, the rate of CMIP6 ensemble mean of global mean thermosteric sea level rise is 0.2 ± 0.1 mm yr<sup>-1</sup>, which is less than half of the observed rate (0.5 ± 0.02 mm yr<sup>-1</sup>). At a multi-decadal timescale, there is an offset of ~10 cm per century between observed/modelled thermosteric sea level over the historical period and modelled thermosteric sea level over this century for the same rate of change of global temperature. We further discuss the difference in global mean thermosteric sea level sensitivity to the changes in global surface temperature over the historical and future periods.</p><p> </p>


2021 ◽  
Author(s):  
Tamsin Edwards ◽  

<p><strong>The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties. </strong></p><p><strong>Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation). </strong></p><p><strong>We find that limiting global warming to 1.5</strong>°<strong>C </strong><strong>would halve the land ice contribution to 21<sup>st</sup> century </strong><strong>sea level rise</strong><strong>, relative to current emissions pledges: t</strong><strong>he median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate. </strong></p><p><strong>However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95<sup>th</sup> percentile exceeding half a metre even under 1.5</strong>°<strong>C warming. </strong></p><p><strong>Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.</strong></p>


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 67-82 ◽  
Author(s):  
M. Ablain ◽  
A. Cazenave ◽  
G. Larnicol ◽  
M. Balmaseda ◽  
P. Cipollini ◽  
...  

Abstract. Sea level is one of the 50 Essential Climate Variables (ECVs) listed by the Global Climate Observing System (GCOS) in climate change monitoring. In the past two decades, sea level has been routinely measured from space using satellite altimetry techniques. In order to address a number of important scientific questions such as "Is sea level rise accelerating?", "Can we close the sea level budget?", "What are the causes of the regional and interannual variability?", "Can we already detect the anthropogenic forcing signature and separate it from the internal/natural climate variability?", and "What are the coastal impacts of sea level rise?", the accuracy of altimetry-based sea level records at global and regional scales needs to be significantly improved. For example, the global mean and regional sea level trend uncertainty should become better than 0.3 and 0.5 mm year−1, respectively (currently 0.6 and 1–2 mm year−1). Similarly, interannual global mean sea level variations (currently uncertain to 2–3 mm) need to be monitored with better accuracy. In this paper, we present various data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on "Sea Level" during its first phase (2010–2013), using multi-mission satellite altimetry data over the 1993–2010 time span. In a first step, using a new processing system with dedicated algorithms and adapted data processing strategies, an improved set of sea level products has been produced. The main improvements include: reduction of orbit errors and wet/dry atmospheric correction errors, reduction of instrumental drifts and bias, intercalibration biases, intercalibration between missions and combination of the different sea level data sets, and an improvement of the reference mean sea surface. We also present preliminary independent validations of the SL_cci products, based on tide gauges comparison and a sea level budget closure approach, as well as comparisons with ocean reanalyses and climate model outputs.


2013 ◽  
Vol 26 (8) ◽  
pp. 2502-2513 ◽  
Author(s):  
N. Bouttes ◽  
J. M. Gregory ◽  
J. A. Lowe

Abstract During the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.


2020 ◽  
Author(s):  
Samuel Helsen ◽  
Sam Vanden Broucke ◽  
Alexandra Gossart ◽  
Niels Souverijns ◽  
Nicole van Lipzig

<p>The Totten glacier is a highly dynamic outlet glacier, situated in E-Antarctica, that contains a potential sea level rise of about 3.5 meters. During recent years, this area has been influenced by sub-shelf intrusion of warm ocean currents, contributing to higher basal melt rates. Moreover, most of the ice over this area is grounded below sea level, which makes the ice shelf potentially vulnerable to the marine ice sheet instability mechanism. It is expected that, as a result of climate change, the latter mechanisms may contribute to significant ice losses in this region within the next decades, thereby contributing to future sea level rise. Up to now, most studies have been focusing on sub-shelf melt rates and the influence of the ocean, with much less attention for atmospheric processes (often ignored), which also play a key-role in determining the climatic conditions over this region. For example: surface melt is important because it contributes to hydrofracturing, a process that may lead to ice cliff instabilities. Also precipitation is an important atmospheric process, since it determines the input of mass to the ice sheet and contributes directly to the surface mass balance. In order to perform detailed studies on these processes, we need a well-evaluated climate model that represents all these processes well. Recently, the COSMO-CLM<sup>2</sup> (CCLM<sup>2</sup>) model was adapted to the climatological conditions over Antarctica. The model was evaluated by comparing a 30 year Antarctic-wide hindcast run (1986-2016) at 25 km resolution with meteorological observational products (Souverijns et al., 2019). It was shown that the model performance is comparable to other state-of-the-art regional climate models over the Antarctic region. We now applied the CCLM<sup>2</sup> model in a regional configuration over the Totten glacier area (E-Antarctica) at 5 km resolution and evaluated its performance over this region by comparing it to climatological observations from different stations. We show that the performance for temperature in the high resolution run is comparable to the performance of the Antarctic-wide run. Precipitation is, however, overestimated in the high-resolution run, especially over dome structures (Law-Dome). Therefore, we applied an orographic smoothening, which clearly improves the precipitation pattern with respect to observations. Wind speed is overestimated in some places, which is solved by increasing the surface roughness. This research frames in the context of the PARAMOUR project. Within PARAMOUR, CCLM<sup>2 </sup>is currently being coupled to an ocean model (NEMO) and an ice sheet model (f.ETISh/BISICLES) in order to understand decadal predictability over this region.</p>


2020 ◽  
Author(s):  
Michiel van den Broeke ◽  
Brice Noël ◽  
Leo van Kampenhout ◽  
Willem-Jan van de Berg

<p>The mass balance of the Greenland ice sheet (GrIS, units Gt per year) equals the surface mass balance (SMB) minus solid ice discharge across the grounding line. As the latter is definite positive, an important threshold for irreversible GrIS mass loss occurs when long-term average SMB becomes negative. For this to happen, runoff (mainly meltwater, some rain) must exceed mass accumulation (mainly snowfall minus sublimation). Even for a single year, this threshold has not been passed since at least 1958, the first year with reliable estimates of SMB components, although recent years with warm summers (e.g. 2012 and 2019) came close. Simply extrapolating the recent (1991-present) negative SMB trend into the future suggests that the SMB = 0 threshold could be reached before ~2040, but such predictions are extremely uncertain given the very large interannual SMB variability, the relative brevity of the time series and the uncertainty in future warming. In this study we use a cascade of models, extensively evaluated with in-situ and remotely sensed (GRACE) SMB observations, to better constrain the future regional warming threshold for the 5-year average GrIS SMB to become negative. To this end, a 1950-2100 climate change run with the global model CESM2 (app. 100 km resolution) was dynamically downscaled using the regional climate model RACMO2 (app. 11 km), which in turn was statistically downscaled to 1 km resolution. The result is a threshold regional Greenland warming of close to 4 degrees. We then use a range of CMIP5 and CMIP6 global climate models to translate the regional value into a global warming threshold for various warming scenarios, including its timing this century. We find substantial differences, ranging from stabilization before the threshold is reached in the RCP/SSP2.6 scenarios with a limited but still significant sea-level rise contribution (< 5 cm by 2100) to an imminent crossing of the warming threshold for the RCP/SSP8.5 scenarios with substantial and ever-growing contributions to sea level rise (> 10 cm by 2100). These results stress the need for strong mitigation to avoid irreversible GrIS mass loss. We finish by discussing the caveats and uncertainties of our approach.</p>


2020 ◽  
Author(s):  
Stefan Hofer ◽  
Charlotte Lang ◽  
Charles Amory ◽  
Christoph Kittel ◽  
Alison Delhasse ◽  
...  

<p>Future climate projections show a marked increase in Greenland Ice Sheet (GrIS) runoff<br>during the 21st century, a direct consequence of the Polar Amplification signal. Regional<br>climate models (RCMs) are a widely used tool to downscale ensembles of projections from<br>global climate models (GCMs) to assess the impact of global warming on GrIS melt and<br>sea level rise contribution. Initial results of the CMIP6 GCM model intercomparison<br>project have revealed a greater 21st century temperature rise than in CMIP5 models.<br>However, so far very little is known about the subsequent impacts on the future GrIS<br>surface melt and therefore sea level rise contribution. Here, we show that the total GrIS<br>melt during the 21st century almost doubles when using CMIP6 forcing compared to the<br>previous CMIP5 model ensemble, despite an equal global radiative forcing of +8.5 W/m2<br>in 2100 in both RCP8.5 and SSP58.5 scenarios. The total GrIS sea level rise contribution<br>from surface melt in our high-resolution (15 km) projections is 17.8 cm in SSP58.5, 7.9 cm<br>more than in our RCP8.5 simulations, despite the same radiative forcing. We identify a<br>+1.7°C greater Arctic amplification in the CMIP6 ensemble as the main driver behind the<br>presented doubling of future GrIS sea level rise contribution</p>


2020 ◽  
Author(s):  
Aslak Grinsted ◽  
Jens Hesselbjerg Christensen

<p>We are warming our planet, and sea levels are rising as oceans expand and ice on land melts. This instigates a threat to coastal communities and ecosystems, and there is an urgent need for sea level predictions encompassing all known uncertainties to plan for it. Comprehensive assessments have concluded that sea level is unlikely to rise by more than about 1.1m this century but with further increase beyond 2100. However, some studies conclude that considerably greater sea level rise could be realised and an expert elicitation assign a substantially higher likelihood to this scenario. Here, we show that models used to assess future sea level in AR5 & SROCC have a lower sea level sensitivity than inferred from observations. By analyzing mean rate of change in sea level (not sea level itself), we identify a near linear relationship with global mean surface temperature in both model projections, and in observations. The model projections fall below expectations from the more recent observational period. This comparison suggests that the likely range of sea level projections in IPCC AR5 and SROCC would be too low.</p>


Sign in / Sign up

Export Citation Format

Share Document