scholarly journals Permeability variation in crystalline rocks due to low-grade solution phenomena

2021 ◽  
Vol 1 ◽  
pp. 65-66
Author(s):  
Rüdiger Kilian ◽  
Michael Stipp

Abstract. Permeability of crystalline rocks depends on parameters such as density and interconnectivity of fractures and pores. While in pristine crystalline rocks porosity is usually considered to be low, low-grade solution phenomena such as the formation of episyenites occur occasionally and may cause a local dramatic increase in porosity and permeability. These solution phenomena can be effective in otherwise unaltered rocks and may result in the preferential removal of certain mineral phases, especially of quartz so that porosities correspond to the spatial distribution of the previously existing mineral phase if no subsequent mineralization occurs (e.g., Pennacchioni et al., 2016). Using light-optical and scanning electron microscopy, X-ray tomography, micro-XRD, as well as digital image analysis, the differences in connectivity and hence permeability between, for example, quartz-depleted granite, gneiss, and schist can be characterized and quantified. We demonstrate that such porosities do not necessarily result in high permeabilities in an undeformed granodiorite from the Central Gneiss unit of the Tauern Window (Lago di Neves area, Italy), since former quartz aggregates are not interconnected due to their relatively late crystallization age and the preservation of the magmatic fabric; however, in the case of moderate mylonitic deformation, quartz as rheologically weak phase forms interconnected aggregates and layers. Its dissolution results in an extremely increased permeability. Therefore, not only the content and grain size but also the distribution, shape and alignment of minerals are crucial for rock permeability and need to be carefully investigated when searching for a final repository of highly radioactive waste in crystalline rocks. Especially since local shear zones may form in otherwise undeformed intrusive bodies, a detailed structural analysis beyond the exclusion of the presence of fractures is required to mitigate the risk of a long-lasting nuclear waste disposal.

1989 ◽  
Vol 126 (6) ◽  
pp. 647-657 ◽  
Author(s):  
W. H. “Beraki ◽  
F. F. Bonavia ◽  
T. Getachew ◽  
R. Schmerold ◽  
T. Tarekegn

AbstractThe Adola Fold and Thrust Belt of Ethiopia is a late- Precambrian, north–south trending belt of volcanic-sedimentary and ophiolite–like units overlying ‘basement rocks’ (gneisses and granitic gneisses). Detailed structural analysis and data from microfabrics have documented two thrusting events (D1, D5) and three folding phases (F2, F3, F4). All deformations have affected both the rocks of the Adola Fold and Thrust Belt and the ‘older basement’. The structural history is recorded as follows: (1) formation of ductile shear zones (Dl); (2) progressive development of recumbent folds (F2); (3) a superimposed north-south trending, tight to isoclinal, upright penetrative folding phase (F3), which imparted the dominant structure of the region; (4) F3 was later gently affected, at right angles to F3, by the last folding event (F4). Metamorphic conditions during this deformational cycle reached highest greenschist to medium amphibolite facies conditions. Close to major thrust contacts imbrication produced metamorphic discontinuities. Marked retrograde metamorphism in narrow horizons indicates a continuation of minor movements along the major thrusts, postdating the metamorphic peak. Evidence of a second thrusting/faulting episode (D5) is only recorded at the mesoscale. This latter event was accompanied by very low to low grade metamorphic conditions. In accepting the previously reported age of 1030±40 Ma for the volcanic–sedimentary unit of the Adola Fold and Thrust Belt, and the interpretation of these units as an immature island arc, a possibly early Pan-African oceanic accretion is postulated.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 437-467 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium–lead (Th-Pb) crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between ∼ 22–20 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14–10 Ma (major peak around 12 Ma), respectively, interpreted to be related to prevailing N–S shortening, in association with E–W extension, beginning strike-slip movements and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission track data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation. Highlights. In situ dating of hydrothermal monazite-(Ce). New constraints on the exhumation of the Tauern metamorphic dome. Distinct tectonic pulses recorded from east to west.


2019 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium-Pb crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 22.3 ± 0.6 Ma to 7.7 ± 0.9 Ma. Three major periods of monazite growth are recorded between ~ 22–19 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 13–8 Ma (major peaks at 12, 10 and 8 Ma), respectively interpreted to be related to prevailing N-S shortening, in association with E-W extension, beginning strike-slip movements, and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission tracks data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation.


1990 ◽  
Vol 127 (2) ◽  
pp. 101-116 ◽  
Author(s):  
U. Pognante ◽  
D. Castelli ◽  
P. Benna ◽  
G. Genovese ◽  
F. Oberli ◽  
...  

AbstractIn the High Himalayan belt of northwest India, crustal thickening linked to Palaeogene collision between India and Eurasia has led to the formation of two main crystalline tectonic units separated by the syn-metamorphic Miyar Thrust: the High Himalayan Crystallines sensu stricto (HHC) at the bottom, and the Kade Unit at the top. These units are structurally interposed between the underlying Lesser Himalaya and the very low-grade sediments of the Tibetan nappes. They consist of paragneisses, orthogneisses, minor metabasics and, chiefly in the HHC, leucogranites. The HHC registers: a polyphase metamorphism with two main stages designated as M1 and M2; a metamorphic zonation with high-temperature recrystallization and migmatization at middle structural levels and medium-temperature assemblages at upper and lower levels. In contrast, the Kade Unit underwent a low-temperature metamorphism. Rb–Sr and U–Th–Pb isotope data point to derivation of the orthogneisses from early Palaeozoic granitoids, while the leucogranites formed by anatexis of the HHC rocks and were probably emplaced during Miocene time.Most of the complicated metamorphic setting is related to polyphase tectonic stacking of the HHC with the ‘cooler’ Kade Unit and Lesser Himalaya during the Himalayan history. However, a few inconsistencies exist for a purely Himalayan age of some Ml assemblages of the HHC. As regards the crustal-derived leucogranites, the formation of a first generation mixed with quartzo-feldspathic leucosomes was possibly linked to melt-lubricated shear zones which favoured rapid crustal displacements; at upper levels they intruded during stage M2 and the latest movements along the syn-metamorphic Miyar Thrust, but before juxtaposition of the Tibetan nappes along the late- metamorphic Zanskar Fault.


2020 ◽  
Vol 191 ◽  
pp. 15 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Philippe Goncalves ◽  
Didier Marquer ◽  
Josselin Gremmel ◽  
...  

In order to constrain the finite deformation pattern of the Variscan basement of the Agly massif, a detailed structural analysis over the whole Agly massif was performed. Our investigation combined geological mapping, reappraisal of published and unpublished data completed with our own structural work. Results are provided in the form of new tectonic maps and series of regional cross-sections through the Agly massif. At variance from previous studies, we identified three deformation fabrics named D1, D2 and D3. The D1 deformation is only relictual and characterized by a broadly northwest-southeast striking and eastward dipping foliation without any clear mineral and stretching lineation direction. D1 might be attributed to thickening of the Variscan crust in a possible orogenic plateau edge position. The D2 deformation is a heterogeneous non-coaxial deformation, affecting the whole massif, that produced a shallowly dipping S2 foliation, and an anastomosed network of C2 shear zones that accommodated vertical thinning and N20 directed extension. D2 is coeval with LP-HT metamorphism and plutonism at ca. 315–295 Ma. D2 corresponds to the extensional collapse of the partially molten orogenic crust in a global dextral strike-slip at the scale of the whole Variscan belt. The D2 fabrics are folded and steepened along a D3 east-west trending corridor, called Tournefort Deformation Zone (TDZ), where the Saint-Arnac and Tournefort intrusives and surrounding rocks share the same NE-SW to E-W subvertical S3 foliation. Along the D3 corridor, the asymmetrical schistosity pattern and kinematic criteria suggest a D3 dextral kinematics. The D3 deformation is a record of E-W striking dextral shearing that facilitated and localized the ascent and emplacement of the diorite and granitic sheet-shaped plutons. D3 outlasted D2 and turned compressional-dominated in response to the closure of the Ibero-Armorican arc in a transpressional regime. The progressive switch from D2 thinning to D3 transpression is attributed to the lessening of gravitational forces at an advanced stage of extensional collapse that became overcome by ongoing compressional tectonic forces at the southern edge of the Variscan orogenic plateau.


1992 ◽  
Vol 29 (3) ◽  
pp. 388-417 ◽  
Author(s):  
Andreas G. Mueller

The Norseman mining district in the Archean Yilgarn Block, Western Australia, has produced 140 t of gold and about 90 t of silver from 11.24 × 106 t of ore. The district is located within a metamorphic terrane of mafic and minor ultramafic greenstones, intruded by granite cupolas and swarms of porphyry dykes. The orebodies consist of laminated quartz veins, controlled by narrow (0.5–5 m) reverse shear zones that, in general, follow the contacts of metapyroxenite or porphyry dykes. Petrological studies of four shear zones, exposed on the Regent shaft 14 level, Ajax shaft 10 level, and in the stope above the North Royal shaft 5 level, show that the host rocks were metamorphosed to hornblende–plagioclase amphibolites and actinolite–chlorite rocks at temperatures of 500–550 °C prior to mineralization.At the localities studied, intense wall-rock replacement and low-grade (0.5 g/t) gold mineralization are confined to ductile or brittle–ductile shear structures. Alteration is similar in both ultramafic and mafic greenstones, and consists of an inner zone of biotite–quartz–calcite–plagioclase rock with minor actinolitic hornblende and quartz–calcite–actinolite veinlets, and an outer zone, locally developed, of chlorite–calcite–quartz rock. At an estimated pressure of 3 kbar (300 MPa), fluid temperatures during wall-rock alteration are constrained by the hydrothermal mineral assemblages to 480 ± 30 °C in two shear zones on the Regent shaft 14 level, and to 450 ± 20 °C in one shear zone in the North Royal shaft 5 level stope. The mole fraction of CO2 of the fluids is estimated at [Formula: see text], and the sulphur fugacity at 10−6 bar (10−1 kPa) (at 450 °C), based on the assemblage pyrrhotite + pyrite ± arsenopyrite. The development of an outer chloritic alteration zone at North Royal is related to the lower fluid temperature at this locality.High-grade (up to 75 g/t Au, 283 g/t Ag) veins formed within three of the shear zones studied at fluid temperatures of 400 °C and less, by the successive accretion of quartz laminae, separated by films of retrograde chlorite and sericite. The assemblage of ore minerals in the veins differs from that in the altered wall rocks, and includes disseminated galena, Pb–Bi–Ag tellurides, and native gold, which coprecipitated with the quartz. The orebodies at Norseman show affinities to Phanerozoic and Archean gold skarn deposits.


2011 ◽  
Vol 149 (2) ◽  
pp. 208-220 ◽  
Author(s):  
UWE RING ◽  
ARNE P. WILLNER ◽  
PAUL W. LAYER ◽  
PETER P. RICHTER

AbstractWe describe the geometry and kinematics of a Jurassic to Early Cretaceous transpressive sinistral strike-slip system within a metamorphic basement inlier of the Mesozoic magmatic arc near Bahia Agua Dulce at latitudes 31–32°S in north-central Chile and discuss possible relations with the Atacama Fault System further north. Sinistral transpression overprints structures of an accretionary system that is represented by the metamorphic basement. Sub-vertical semi-ductile NNW-striking strike-slip shear zones are the most conspicuous structures. Chlorite and sericite grew, and white mica and quartz dynamically recrystallized, suggesting low-grade metamorphic conditions during semi-ductile deformation. Folds at the 10–100 metre scale developed before and during strike-slip shearing. The folds are deforming a former sub-horizontal transposition foliation that originated during prior accretion processes. The folds have axes sub-parallel to the strike-slip shear zones and sub-vertical axial surfaces indicating a component of shortening parallel to the shear-zone boundaries, suggesting an overall transpressive deformation regime. Transpressive strike-slip deformation also affects Middle Triassic (Anisian) basal breccias of the El Quereo Formation.40Ar–39Ar laser ablation ages of synkinematically recrystallized white mica in one of the shear zones provide an age of 174–165 Ma for the waning stages of semi-ductile strike-slip shearing. The semi-ductile shear zones are cut by mafic and rhyolite dykes. Two rhyolite dykes yield40Ar–39Ar ages of 160.5 ± 1.7 Ma and 131.9 ± 1.7 Ma, respectively. The latter dyke has been affected by brittle faulting. Fault-slip analysis shows that the kinematics of the faulting event is similar to the one of the semi-ductile shearing event, suggesting that sinistral transpression continued after ~130 Ma. Timing, kinematics and geographic position suggest that the shear zones at Bahia Agua Dulce represent a southern continuation of the prominent Atacama Fault System that affected the Jurassic/Early Cretaceous arc over its ~1400 km length.


Sign in / Sign up

Export Citation Format

Share Document