scholarly journals Evolution of structures and hydrothermal alteration in a Palaeoproterozoic metasupracrustal belt: Constraining paired deformation-fluid flow events in a Fe and Cu-Au prospective terrain in northern Sweden

2019 ◽  
Author(s):  
Joel B. H. Andersson ◽  
Tobias E. Bauer ◽  
Edward P. Lynch

Abstract. In this field-based study, a ~ 90 km long Palaeoproterozoic metasupracrustal belt in the northwestern part of the Norrbotten ore province (northernmost Sweden) has been investigated in order to characterize its various structural components and thus constrain its structural evolution. In addition, hydrothermal mineral associations are described and linked to identified deformation phases. New geological mapping of five key areas (Eustiljåkk, Ekströmsberg, Tjårrojåkka, Kaitum West and Fjällåsen-Allavaara) indicates two major compressional events (D1, D2) that affected the belt whereas each deformation event can be related to specific alteration styles typical for iron oxide-apatite and iron oxide Cu-Au systems. D1 generated a regionally distributed penetrative S1 foliation and oblique reverse shear zones with southwest block up sense-of-shears in response to NE–SW crustal shortening. D1 is associated with regional scapolite ± albite alteration formed coeval with regional magnetite ± amphibole alteration and calcite under epidote-amphibolite metamorphism. During D2, folding of S1 generated steeply south-plunging F2-folds in low strain areas whereas most strain was partitioned into pre-existing shear zones resulting in reverse dip-slip reactivation of steep NNW-oriented D1 shear zones and strike-slip dominated movements along steep E–W-trending shear zones under brittle-ductile conditions. The hydrothermal alteration linked to the D2 deformation phase is more potassic in character and dominated by K-feldspar ± epidote ± quartz ± biotite ± magnetite ± sericite ± sulphides, and calcite. Our results underline the importance of paired structural-alteration approaches at the regional- to belt-scale to understand the temporal-spatial relationship between mineralized systems. Based on the mapping results and microstructural investigations, as well as a review of earlier tectonic models presented for adjacent areas, we suggest a new structural model for this part of the northern Fennoscandian Shield. Our new structural model harmonizes with earlier petrological/geochemical tectonic models of the northern Norrbotten area and emphasizes the importance of reactivation of early formed structures.

Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 547-578 ◽  
Author(s):  
Joel B. H. Andersson ◽  
Tobias E. Bauer ◽  
Edward P. Lynch

Abstract. An approximately 90 km long Palaeoproterozoic supracrustal belt in the northwestern Norrbotten ore province (northernmost Sweden) was investigated to characterize its structural components, assess hydrothermal alteration–structural geology correlations, and constrain a paired deformation–fluid flow evolution for the belt. New geological mapping of five key areas (Eustiljåkk, Ekströmsberg, Tjårrojåkka, Kaitum West, and Fjällåsen–Allavaara) indicates two major compressional events (D1 and D2) have affected the belt, with each associated with hydrothermal alteration types typical for iron oxide–apatite and iron oxide Cu–Au systems in the region. Early D1 generated a regionally distributed, penetrative S1 foliation and oblique reverse shear zones that show a southwest-block-up sense of shear that formed in response to NE–SW crustal shortening. Peak regional metamorphism at epidote–amphibolite facies broadly overlaps with this D1 event. Based on overprinting relationships, D1 is associated with regional scapolite ± albite, magnetite + amphibole, and late calcite alteration of mafic rock types. These hydrothermal mineral associations linked to D1 structures may form part of a regionally pervasive evolving fluid flow event but are separated in this study by crosscutting relationships. During D2 deformation, folding of S0–S1 structures generated F2 folds with steeply plunging fold axes in low-strain areas. NNW-trending D1 shear zones experienced reverse dip-slip reactivation and strike-slip-dominated movements along steep, E–W-trending D2 shear zones, producing brittle-plastic structures. Hydrothermal alteration linked to D2 structures is a predominantly potassic–ferroan association comprising K-feldspar ± epidote ± quartz ± biotite ± magnetite ± sericite ± sulfides. Locally, syn- or post-tectonic calcite is the main alteration mineral in D2 shear zones that intersect mafic rocks. Our results highlight the importance of combining structural geology with the study of hydrothermal alterations at regional to belt scales to understand the temporal–spatial relationship between mineralized systems. Based on the mapping results and microstructural investigations as well as a review of earlier tectonic models presented for adjacent areas, we suggest a new structural model for this part of the northern Fennoscandian Shield. The new model emphasizes the importance of reactivation of early structures, and the model harmonizes with tectonic models presented by earlier workers based mainly on petrology of the northern Norrbotten area.


2020 ◽  
Vol 59 (3) ◽  
pp. 19-26
Author(s):  
Musab Awad Ahmed HASSAN ◽  
◽  
Aleksandr Evgen’yevich KOTEL’NIKOV ◽  

Relevance and purpose of the work. The study area is located in Gedarif state in Sudan. The ongoing work is aimed at solving fundamental problems of the geological structure of the Qala En Nahal-Um Saqata Ophiolitic Complex and applied tasks of mineral exploration. Detailed studies are being conducted for the first time in this area. The purpose of the investigation is to study the geological and structural features of the region, as well as to obtain information about the localization of gold mineralization. Methods of research. Within the study area, a geological mapping of the ophiolitic complex was carried out. It’s included an analysis of structural elements for investigation of the structural evolution and the phases of deformation. Chemical analysis of the mineralized quartz veins to determine the gold was carried out by Atomic Absorption Spectrometry (AAS) technique at the ALS Laboratory in Saudi Arabia. Results of the work. The investigation of the structural evolution revealed at least three phases of deformation. The gold mineralization occurs in auriferous quartz veins, which are hosted in metavocano-sedimentary, sheared synorogenic granites and listvenites. The auriferous quartz veins are structurally controlled by dominantly NE main shear directions. Conclusions. The gold mineralization in the area can be classified shear zone related mineralization, which is formed during the final event accomplished by crustal cooling, and formation of auriferous quartz vein along shear zones. Gold concentration were recorded in both quartz veins and associates alteration rocks. The area is promising for the presence of a gold deposit.


2018 ◽  
Vol 483 (1) ◽  
pp. 305-323 ◽  
Author(s):  
Rodolfo Carosi ◽  
Chiara Montomoli ◽  
Salvatore Iaccarino ◽  
Dario Visonà

AbstractJoining geological mapping, structural analysis, petrology and geochronology allowed the internal architecture of the Greater Himalayan Sequence (GHS) to be unraveled. Several top-to-the-south/SW tectonic–metamorphic discontinuities developed at the regional scale, dividing it into three main units exhumed progressively from the upper to the lower one, starting from c. 40 Ma and lasting for several million years. The activity of shear zones has been constrained and linked to the pressure–temperature–time–deformation (P–T–t–D) evolution of the deformed rocks by the use of petrochronology. Hanging wall and footwall rocks of the shear zones recorded maximum P–T conditions at different times. Above the Main Central Thrust, a cryptic tectonometamorphic discontinuity (the High Himalayan Discontinuity (HHD)) has been recognized in Central-Eastern Himalaya.The older shear zone, that was active at c. 41–28 Ma, triggered the earlier exhumation of the uppermost GHS and allowed the migration of melt, which was produced at peak metamorphic conditions and subsequently produced in abundance at the time of the activation of the HHD. Production of melt continued at low pressure, with nearly isobaric heating leading to the genesis and emplacement of andalusite- and cordierite-bearing granites.The timing of the activation of the shear zones from deeper to upper structural levels fits with an in-sequence shearing tectonic model for the exhumation of the GHS, further affected by out-of-sequence thrusts.


Geology ◽  
2017 ◽  
Vol 45 (6) ◽  
pp. 571-574 ◽  
Author(s):  
Anne Westhues ◽  
John M. Hanchar ◽  
Mark J. LeMessurier ◽  
Martin J. Whitehouse

2014 ◽  
Vol 86 (3) ◽  
pp. 1101-1113 ◽  
Author(s):  
FABRÍCIO A. CAXITO ◽  
ALEXANDRE UHLEIN ◽  
LUIZ F.G. MORALES ◽  
MARCOS EGYDIO-SILVA ◽  
JULIO C.D. SANGLARD ◽  
...  

The Rio Preto fold belt borders the northwestern São Francisco craton and shows an exquisite kilometric doubly-vergent asymmetric fan structure, of polyphasic structural evolution attributed exclusively to the Brasiliano Orogeny (∼600-540 Ma). The fold belt can be subdivided into three structural compartments: The Northern and Southern compartments showing a general NE-SW trend, separated by the Central Compartment which shows a roughly E-W trend. The change of dip of S2, a tight crenulation foliation which is the main structure of the fold belt, between the three compartments, characterizes the fan structure. The Central Compartment is characterized by sub-vertical mylonitic quartzites, which materialize a system of low-T strike slip shear zones (Malhadinha – Rio Preto Shear Zone) crosscutting the central portion of the fold belt. In comparison to published analog models, we consider that the unique structure of the Rio Preto fold belt was generated by the oblique, dextral-sense interaction between the Cristalândia do Piauí block to the north and the São Francisco craton to the south.


2019 ◽  
Vol 24 ◽  
pp. 35-44
Author(s):  
Rajeev Prasad ◽  
Nishith Sharma

Construction of underground Cavern in the Himalayan region is full of challenges and uncertainties. Experience has shown that construction in Himalayan regions requires good understanding of geology, adequate site investigations, proper design and selection of suitable construction methodology and technology. The most commonly encountered geological problems during excavation of underground structure in Hydroelectric Projects are, Fault/Thrust/Shear Zones squeezing and swelling, wedge block failure etc. Tehri Pumped Storage Plant (PSP) is located at the left bank of river Bhagirathi in the state of Uttarakhand in Northern India. This case study indicates about the geological challenges faced and their remedial measures during the construction of Tehri PSP Powerhouse Cavern having dimension of 203m x 24m x 58m.3D-geological mapping with 1:100 scales was carried out in excavated central drift of powerhouse to evaluate the rock composition, behavior of rock mass, structural features and further investigation to finalize the layout and orientation. During the investigation Sheared Phyllite with bands of thinly Phyllite Quartzite rock were encountered in the end portion of central drift of powerhouse which had posed a mammoth challenge in designing the powerhouse cavern. Keeping in view the recommendations of geotechnical experts and the design consultants, decision were made to shift the cavern further by 50 m to avoid Sheared Phyllite bands. The shifting of cavern led to the reorientation of structures like control room, service bay and location of units etc. This paper briefly describes the Engineering Geological and Geotechnical set up of powerhouse with proper investigation approaches and excavation sequences highlighting the importance of orientation and Sheared Phyllite Zone.


1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2140 ◽  
Author(s):  
Matteo Basilici ◽  
Stefano Mazzoli ◽  
Antonella Megna ◽  
Stefano Santini ◽  
Stefano Tavani

The Zagros thrust belt is a large orogenic zone located along the southwest region of Iran. To obtain a better knowledge of this important mountain chain, we elaborated the first 3-D model reproducing the thermal structure of its northwestern part, i.e., the Lurestan arc. This study is based on a 3-D structural model obtained using published geological sections and available information on the depth of the Moho discontinuity. The analytical calculation procedure took into account the temperature variation due to: (1) The re-equilibrated conductive state after thrusting, (2) frictional heating, (3) heat flow density data, and (4) a series of geologically derived constraints. Both geotherms and isotherms were obtained using this analytical methodology. The results pointed out the fundamental control exerted by the main basement fault of the region, i.e., the Main Frontal Thrust (MFT), in governing the thermal structure of the crust, the main parameter being represented by the amount of basement thickening produced by thrusting. This is manifested by more densely spaced isotherms moving from the southwestern foreland toward the inner parts of orogen, as well as in a lateral variation related with an along-strike change from a moderately dipping crustal ramp of the MFT to the NW to a gently dipping crustal ramp to the SE. The complex structural architecture, largely associated with late-stage (Pliocene) thick-skinned thrusting, results in a zone of relatively high geothermal gradient in the easternmost part of the study area. Our thermal model of a large crustal volume, besides providing new insights into the geodynamic processes affecting a major salient of the Zagros thrust belt, may have important implications for seismotectonic analysis in an area recently affected by a Mw = 7.3 earthquake, as well as for geothermal/hydrocarbon exploration in the highly perspective Lurestan region.


2020 ◽  
Vol 191 ◽  
pp. 15 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Philippe Goncalves ◽  
Didier Marquer ◽  
Josselin Gremmel ◽  
...  

In order to constrain the finite deformation pattern of the Variscan basement of the Agly massif, a detailed structural analysis over the whole Agly massif was performed. Our investigation combined geological mapping, reappraisal of published and unpublished data completed with our own structural work. Results are provided in the form of new tectonic maps and series of regional cross-sections through the Agly massif. At variance from previous studies, we identified three deformation fabrics named D1, D2 and D3. The D1 deformation is only relictual and characterized by a broadly northwest-southeast striking and eastward dipping foliation without any clear mineral and stretching lineation direction. D1 might be attributed to thickening of the Variscan crust in a possible orogenic plateau edge position. The D2 deformation is a heterogeneous non-coaxial deformation, affecting the whole massif, that produced a shallowly dipping S2 foliation, and an anastomosed network of C2 shear zones that accommodated vertical thinning and N20 directed extension. D2 is coeval with LP-HT metamorphism and plutonism at ca. 315–295 Ma. D2 corresponds to the extensional collapse of the partially molten orogenic crust in a global dextral strike-slip at the scale of the whole Variscan belt. The D2 fabrics are folded and steepened along a D3 east-west trending corridor, called Tournefort Deformation Zone (TDZ), where the Saint-Arnac and Tournefort intrusives and surrounding rocks share the same NE-SW to E-W subvertical S3 foliation. Along the D3 corridor, the asymmetrical schistosity pattern and kinematic criteria suggest a D3 dextral kinematics. The D3 deformation is a record of E-W striking dextral shearing that facilitated and localized the ascent and emplacement of the diorite and granitic sheet-shaped plutons. D3 outlasted D2 and turned compressional-dominated in response to the closure of the Ibero-Armorican arc in a transpressional regime. The progressive switch from D2 thinning to D3 transpression is attributed to the lessening of gravitational forces at an advanced stage of extensional collapse that became overcome by ongoing compressional tectonic forces at the southern edge of the Variscan orogenic plateau.


Sign in / Sign up

Export Citation Format

Share Document