scholarly journals On the comparison of strain measurements from fibre optics with dense seismometer array at Etna volcano (Italy)

2021 ◽  
Author(s):  
Gilda Currenti ◽  
Philippe Jousset ◽  
Rosalba Napoli ◽  
Charlotte Krawczyk ◽  
Michael Weber

Abstract. We demonstrate the capability of Distributed Acoustic Sensing (DAS) in recording volcano related dynamic strain at Etna (Italy). In summer 2019, we gathered DAS measurements from a 1.5 km long fibre in a shallow trench and seismic records from a conventional dense array comprising 26 broadband sensors deployed in Piano delle Concazze close to the summit area. The multifaceted style of Etna activity during the acquisition period gives the extraordinary opportunity to record and detect tiny strain changes (few 10−8 strain) in correspondence with volcanic events. To validate the DAS strain measures, we explored array-derived methods to estimate strain changes from the seismic signals and to compare with strain DAS signals. A general good agreement was found between array-derived strain and DAS measures along the fibre optic cable. Short wavelength discrepancies correspond with fault zones, showing the potential of DAS in mapping local perturbations of the strain field, and thus site effect, due to small-scale heterogeneities in volcanic settings.

Solid Earth ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 993-1003
Author(s):  
Gilda Currenti ◽  
Philippe Jousset ◽  
Rosalba Napoli ◽  
Charlotte Krawczyk ◽  
Michael Weber

Abstract. We demonstrate the capability of distributed acoustic sensing (DAS) to record volcano-related dynamic strain at Etna (Italy). In summer 2019, we gathered DAS measurements from a 1.5 km long fibre in a shallow trench and seismic records from a conventional dense array comprised of 26 broadband sensors that was deployed in Piano delle Concazze close to the summit area. Etna activity during the acquisition period gives the extraordinary opportunity to record dynamic strain changes (∼ 10−8 strain) in correspondence with volcanic events. To validate the DAS strain measurements, we explore array-derived methods to estimate strain changes from the seismic signals and to compare with strain DAS signals. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Short wavelength discrepancies correspond with fault zones, showing the potential of DAS for mapping local perturbations of the strain field and thus site effect due to small-scale heterogeneities in volcanic settings.


2020 ◽  
Author(s):  
Gilda Currenti ◽  
Philippe Jousset ◽  
Athena Chalari ◽  
Luciano Zuccarello ◽  
Rosalba Napoli ◽  
...  

<p>We explore a unique dataset collected by Distributed Acoustic Sensing (DAS) technology at the summit of Etna volcano in September 2018. We set-up an iDAS interrogator (Silixa) inside the Observatory Pizzi Deneri to record strain rate signals along a 1.3 km-long fibre optic cable deployed in Piano delle Concazze. This area is affected by several North-South trending faults and fractures, that are originated to accommodate the extension of the nearby North-East Rift zone, where magmatic intrusions often occur. The field evidence of the segments of these faults and fractures is hidden by lava flows and volcano-clastic deposits (e.g. scoria and lapilli) produced by the effusive and explosive activity of Etna volcano.</p><p>We propose a new technological and methodological framework to validate, identify and characterize volcano-related dynamic strain changes at an unprecedented high spatial (2 m) and temporal (1 kHz) sampling over a broad frequency range. The DAS record analysis and the validation of the iDAS response is performed through comparisons with measurements from a dense network of conventional sensors (comprising 5 broadband seismometers, 15 short-period geophone and two arrays of 3 infrasound sensors) deployed along  the fibre optic cable.  Comparisons between iDAS signals and dynamic strain changes estimated from the broadband seismic array shows an excellent agreement, thus demonstrating for the first time the capability of DAS technology in sensing seismic waves generated by volcanic events.</p><p>The frequent and diverse Etna activity during the acquisition period (30 August - 16 September 2018) offers the great opportunity to record a wide variety of signals and, hence, to test the response of iDAS to several volcanic processes (e.g. volcanic tremor, explosions, strombolian activity, local seismic events). Here, we focus the analysis on the signals recorded during a small explosive event on 5 September 2018 from the New South-East Crater (NSEC). This explosive event generated both seismic waves (recorded by the seismometers) propagating in the ground, and acoustic pressure signals (recorded by the infra-sound arrays) propagating in the atmosphere. We show that the DAS records catch both, as confirmed by the conventional sensors records.</p><p>Spectrogram analyses of the DAS signals reveal that the frequency content is confined in two distinctive frequency bands in the ranges 0.5-10 Hz and 18-25 Hz, for the seismic and acoustic wave, respectively. The amplitude and frequency response of the ground to the arrival and propagation of the seismo-acoustic wave along the fibre reveal spatial characteristic patterns that reflect local geological structures. For example, the finer spatial sampling of the iDAS records allows catching details of the variability of dynamic strain amplitudes along the fibre. Amplified signals are found at localized narrow regions matching fracture zones and faults. There, a decrease in the propagation velocity of the seismo-acoustic waves is also clearly pinpointed. </p><p>These preliminary findings demonstrate the DAS potentiality to revolutionize the study of volcanic process by discovering new signal features undetectable with traditional sensors and methodologies.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


1987 ◽  
Vol 174 ◽  
pp. 209-231 ◽  
Author(s):  
H. Gao ◽  
G. Metcalfe ◽  
T. Jung ◽  
R. P. Behringer

This paper first describes an apparatus for measuring the Nusselt number N versus the Rayleigh number R of convecting normal liquid 4He layers. The most important feature of the apparatus is its ability to provide layers of different heights d, and hence different aspect ratios [Gcy ]. The horizontal cross-section of each layer is circular, and [Gcy ] is defined by [Gcy ] = D/2d where D is the diameter of the layer. We report results for 2.4 [les ] [Gcy ] [les ] 16 and for Prandtl numbers Pr spanning 0.5 [lsim ] Pr [lsim ] 0.9 These results are presented in terms of the slope N1 = RcdN/dR evaluated just above the onset of convection at Rc. We find that N1 is only a slowly increasing function of [Gcy ] in the range 6 [lsim ] [Gcy ] [lsim ] 16, and that it has a value there which is quite close to 0.72. This value of N1 is in good agreement with variational calcuations by Ahlers et al. (1981) pertinent to parallel convection rolls in cylindrical geometry. Particularly for [Gcy ] [lsim ] 6, we find additional small-scale structure in N1 associated with changes in the number of convection rolls with changing [Gcy ]. An additional test of the linearzied hydrodynamics is given by measurements of Rc. We find good agreement between theory and our data for Rc.


1972 ◽  
Vol 62 (6) ◽  
pp. 1649-1664 ◽  
Author(s):  
P. Schnabel ◽  
H. Bolton Seed ◽  
J. Lysmer

abstract A procedure for modifying the time histories of seismic records for the effect of local soil conditions is presented. The method is based on a conventional one-dimensional wave-propagation approach with equivalent linear soil properties, extended to practical use for transient motions through the Fast Fourier technique. The validity of the approach is tested against the motions recorded at four soil sites and one rock site during the 1957 San Francisco earthquake. The good agreement between the computed and recorded values indicates that rock motions can be computed from motions recorded on soil deposits, and that the computed rock motions in turn can be used to predict the motion that would have been recorded under different soil and geological conditions. The method is also used to evaluate the probable rock motions in the vicinity of El Centro in the earthquake of 1940 and the ground surface motions that could have been developed on various soil conditions in the same general area.


1988 ◽  
Vol 11 ◽  
pp. 14-18 ◽  
Author(s):  
J. Determann ◽  
F. Thyssen ◽  
H. Engelhardt

In January 1986, reflection-seismic measurements were made in the central part of Filchner-Ronne Ice Shelf, north of Henry and Korff ice rises, by a German oversnow traverse. With the help of a newly developed “ice streamer”, two people were able to obtain seismic records nearly every 5km over a distance of 150km within 3d. Processing of digitally recorded seismograms yielded profiles of ice thickness and sea depth. The ice thickness varies from 400 to 500 m and is in good agreement with the thickness of 465 m at a drill hole. The reflection-seismic results are comparable with those obtained from aerogeophysical measurements.


2018 ◽  
Vol 910 ◽  
pp. 161-166 ◽  
Author(s):  
Tei Saburi ◽  
Toshiaki Takahashi ◽  
Shiro Kubota ◽  
Yuji Ogata

The dynamic strain distribution behavior of a mortar block blasting was experimentally investigated. A small-scale blasting experiment using a mortar block with well-defined property was conducted and the dynamic strain distribution on the mortal block surface was analyzed using a Digital Image Correlation (DIC) method to establish the effective method for investigating the relationship between blast design and fracture mechanism. The block was blasted by simultaneous detonation of Composition C4 explosive charges with an electric detonator in two boreholes. The behavior of the block surface was observed by two high-speed cameras for three-dimensional DIC analysis and it was also measured by a strain-gauge for comparison. The three-dimensional displacements of the free surface of the block were obtained and dynamic strain distributions were computed. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile by the strain gauge.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


2020 ◽  
Vol 493 (1) ◽  
pp. L11-L15 ◽  
Author(s):  
M R Lovell

ABSTRACT The claimed detection of large amounts of substructure in lensing flux anomalies, and in Milky Way stellar stream gap statistics, has led to a step change in constraints on simple warm dark matter models. In this study, we compute predictions for the halo mass function both for these simple models and for comprehensive particle physics models of sterile neutrinos and dark acoustic oscillations. We show that the mass function fit of Lovell et al. underestimates the number of haloes less massive than the half-mode mass, $M_\mathrm {hm}$, by a factor of 2, relative to the extended Press–Schechter (EPS) method. The alternative approach of applying EPS to the Viel et al. matter power spectrum fit instead suggests good agreement at $M_\mathrm {hm}$ relative to the comprehensive model matter power spectrum results, although the number of haloes with mass $\rm{\lt} M_\mathrm {hm}$ is still suppressed due to the absence of small-scale power in the fitting function. Overall, we find that the number of dark matter haloes with masses $\rm{\lt} 10^{8}{\, \rm M_\odot }$ predicted by competitive particle physics models is underestimated by a factor of ∼2 when applying popular fitting functions, although careful studies that follow the stripping and destruction of subhaloes will be required in order to draw robust conclusions.


2014 ◽  
Vol 51 (2) ◽  
pp. 11-21 ◽  
Author(s):  
A. Sokolovs ◽  
L. Grigans ◽  
E. Kamolins ◽  
J. Voitkans

Abstract The authors present a small-scale wind turbine emulator based on the AC drive system and discuss the methods for power coefficient calculation. In the work, the experimental set-up consisting of an AC induction motor, a frequency converter, a synchronous permanent magnet generator, a DC-DC boost converter and DC load was simulated and tested using real-life equipment. The experimentally obtained wind turbine power and torque diagrams using the emulator are in a good agreement with the theoretical ones.


Sign in / Sign up

Export Citation Format

Share Document