scholarly journals Timescales of chemical equilibrium between the convecting solid mantle and over-/underlying magma oceans

2020 ◽  
Author(s):  
Daniela Paz Bolrão ◽  
Maxim Dionys Ballmer ◽  
Adrien Morison ◽  
Antoine Billy Rozel ◽  
Patrick Sanan ◽  
...  

Abstract. After accretion and formation, terrestrial planets go through at least one magma ocean episode. As the magma ocean crystallises, it creates the first layer of solid rocky mantle. Two different scenarios of magma ocean crystallisation involve that the solid mantle either (1) first appears at the core-mantle boundary and grows upwards, or (2) appears at mid-mantle depth and grows in both directions. Regardless of the magma ocean freezing scenario, the composition of the solid mantle and liquid reservoirs continuously change due to fractional crystallisation. This chemical fractionation has important implications for the long-term thermo-chemical evolution of the mantle, as well as its present-day dynamics and composition. In this work we use numerical models to study convection in a solid mantle bounded at either or both boundaries by magma ocean(s), and in particular, the related consequences for large-scale chemical fractionation. We use a parameterisation of fractional crystallisation of the magma ocean(s) and (re-)melting of solid material at the interface between these reservoirs. When these crystallisation/re-melting processes are taken into account, convection in the solid mantle occurs readily and is dominated by large wavelengths. Related material transfer across the mantle magma-ocean boundaries promotes chemical equilibrium, and prevents extreme enrichment of the last-stage magma ocean (as would otherwise occur due to pure fractional crystallisation). The timescale of equilibration depends on the convective vigour of mantle convection and on the efficiency of material transfer between the solid mantle and magma ocean(s). For Earth, this timescale is comparable to that of magma ocean crystallisation suggested in previous studies (Lebrun et al., 2013), which may explain why the Earth's mantle is rather homogeneous in composition, as supported by geophysical constraints.

Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 421-437
Author(s):  
Daniela Paz Bolrão ◽  
Maxim D. Ballmer ◽  
Adrien Morison ◽  
Antoine B. Rozel ◽  
Patrick Sanan ◽  
...  

Abstract. After accretion and formation, terrestrial planets go through at least one magma ocean episode. As the magma ocean crystallises, it creates the first layer of solid rocky mantle. Two different scenarios of magma ocean crystallisation involve that the solid mantle either (1) first appears at the core–mantle boundary and grows upwards or (2) appears at mid-mantle depth and grows in both directions. Regardless of the magma ocean freezing scenario, the composition of the solid mantle and liquid reservoirs continuously change due to fractional crystallisation. This chemical fractionation has important implications for the long-term thermo-chemical evolution of the mantle as well as its present-day dynamics and composition. In this work, we use numerical models to study convection in a solid mantle bounded at one or both boundaries by magma ocean(s) and, in particular, the related consequences for large-scale chemical fractionation. We use a parameterisation of fractional crystallisation of the magma ocean(s) and (re)melting of solid material at the interface between these reservoirs. When these crystallisation and remelting processes are taken into account, convection in the solid mantle occurs readily and is dominated by large wavelengths. Related material transfer across the mantle–magma ocean boundaries promotes chemical equilibrium and prevents extreme enrichment of the last-stage magma ocean (as would otherwise occur due to pure fractional crystallisation). The timescale of equilibration depends on the convective vigour of mantle convection and on the efficiency of material transfer between the solid mantle and magma ocean(s). For Earth, this timescale is comparable to that of magma ocean crystallisation suggested in previous studies (Lebrun et al., 2013), which may explain why the Earth's mantle is rather homogeneous in composition, as supported by geophysical constraints.


2003 ◽  
Vol 30 (1) ◽  
pp. 28-41 ◽  
Author(s):  
K van Steenis ◽  
F E Hicks ◽  
T M Hrudey ◽  
S Beltaos

The ability to predict the response of an ice sheet to long-term loading is important in many situations. In northern regions, ice sheets have been used as construction platforms, drilling rig platforms, airfields, parking lots, and festival platforms. Numerical models can be used to predict the deflection of an ice sheet over time and, together with a failure criterion based on allowable deflection, can facilitate the safe use of an ice cover under long-term loading situations. In this study, a two-dimensional axisymmetric finite element model was developed to model the behaviour of a homogeneous, transversely isotropic, infinite ice cover under long-term loading. The model was validated using 33 sets of long-term load test data from large-scale field experiments performed on lake, bay, and reservoir ice and was shown to be capable of reliably predicting deflections under a variety of loading scenarios.Key words: bearing capacity of ice, long-term loading, ice platforms.


2011 ◽  
Vol 1 (32) ◽  
pp. 61 ◽  
Author(s):  
Nicolas Chini ◽  
Peter Stansby ◽  
Mike Walkden ◽  
Jim Hall ◽  
Judith Wolf ◽  
...  

Assessment of nearshore response to climatic change is an important issue for coastal management. To predict potential effects of climate change, a framework of numerical models has been implemented which enables the downscaling of global projections to an eroding coastline, based on TOMAWAC for inshore wave propagation input into SCAPE for shoreline modelling. With this framework, components of which have already been calibrated and validated, a set of consistent global climate change projections is used to estimate the future evolution of an un-engineered coastline. The response of the shoreline is sensitive to the future scenarios, underlying the need for long term large scale offshore conditions to be included in the prediction of non-stationary processes.


2020 ◽  
Author(s):  
Anne Baar ◽  
Elena Bastianon ◽  
Lisanne Braat ◽  
Daniel Parsons

<p>Alluvial estuaries are dynamic landscapes that are very sensitive to changes in boundary conditions such as river discharge and sediment supply. A better understanding of the influence of upstream river discharge and sediment input on the development of estuaries under various scenarios requires long-term morphodynamic models, to both predict future changes and improve geological interpretations by storing the stratigraphy. Past 1D model studies have shown that upstream river discharge has a significant effect on the equilibrium bed profile of estuaries, but these studies ignore the effect of 2D bar and channel formation. Using 2D numerical models to predict the development of these systems on the scale of millennia proved to be difficult, since the modelled morphology is very sensitive to the choice in e.g. sediment transport predictor and bed slope effect. In this study, we use the knowledge of previous research that determined best parameter settings for realistic river and bar patterns to model long-term and large-scale estuary morphodynamics in Delft3D. Our objective is to quantify the effects of river discharge and sediment supply on the shape of estuaries and its deposits. Firstly, we systematically varied upstream river width and tidal amplitude to examine the relation between upstream river pattern and estuary dimensions. We quantified e.g. braiding index, bar dimensions, and tidal excursion length. Results show that flood flow velocities and tidal prism are less influenced by river discharge than suggested by 1D models, and are significantly influenced by the braiding index of the river. With relatively high tides, estuary bar patterns depend on tidal amplitude, while with lower tides estuary depth and braiding index are related to upstream river width and discharge. Next steps will include varying discharge to study the effect on the rate of adaptation of the river and estuary, and varying the grain size of the sediment input at the upstream boundary. We will input coarse sediment to explore differences between fluvial deposits and tidal currents, and fine sediment to use the model for research related to biofilm.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1219
Author(s):  
Emmanuel Olaoluwa Eresanya ◽  
Yuping Guan

The Pacific Walker circulation (PWC) is one of the most important components of large-scale tropical atmospheric circulations. The PWC and its influences have been studied extensively by numerical models and reanalysis. The newly released ERA5 and NCEP2 are the most widely used reanalysis datasets and serve as benchmarks for evaluation of model simulations. If the results of these datasets differ significantly, this could lead to a bias in projected long-term climate knowledge. For better understanding of future climate change, it is necessary to evaluate PWC reanalysis productions. As a result, we compared the PWC structures between the ERA5 and NCEP2 datasets from month to seasonal time scales. We used the zonal mass streamfunction (ZMS) over the equatorial Pacific to indicate the strength of the PWC. The PWC’s average monthly or seasonal cycle peaks around July. From February to June, the NCEP2 shows a higher PWC intensity, whereas the ERA5 shows greater intensity from July to December. The circulation center in the NCEP2 is generally stronger and wider than in the ERA5. The ERA5, however, revealed that the PWC’s west edge (zero line of ZMS over the western Pacific) had moved 10 degrees westward in comparison to the NCEP2. In addition, we compared the PWC mean state in the reanalysis and CMIP6 models; the mean state vertical structures of the tropical PWC in the CMIP6 multi-model ensemble (MME) are similar to those of the reanalyses in structure but weaker and wider than in the two reanalysis datasets. The PWC is broader in CMIP6, and the western boundary is 7 and 17 degrees farther west than in the ERA5 and NCEP2, respectively. This study suggests that, when using reanalysis datasets to evaluate PWC structural changes in intensity and western edge, extreme caution should be exercised.


2021 ◽  
Author(s):  
Stephane Labrosse ◽  
Adrien Morison ◽  
Daniela Bolrão ◽  
Antoine Rozel ◽  
Maxim Ballmer ◽  
...  

<p>The early evolution of the Earth was likely affected by a large scale magma ocean, in particular in the aftermath of the giant impact that formed the Moon. The exact structure and dynamics of the Earth following that event is unknown but several possible scenarios feature the existence of a basal magma ocean (BMO), whose last remaining drops may explain the current seismically detected ultra low velocity zones. The presence of a BMO covering the core carries many implications for the dynamics and evolution of the overlying solid mantle. The phase equilibrium between the magma and the solid mantle allows matter to flow through the boundary by melting and freezing. In practice, convective stresses in the solid create a topography of the interface which displaces the equilibrium. Heat and solute transfer in the liquid acts to erase this topography and, if this process is faster than that the producing topography, the boundary appears effectively permeable to flow. This leads to convective motions much faster than in usual mantle convection. We developed a mantle convection model coupled to a model for the thermal and compositional evolution of the BMO and the core that takes into account the phase equilibrium at the bottom of the solid mantle. It also includes the fractional crystallisation at the interface and net freezing of the magma ocean. Early in the history, convection in the mantle is very fast and dominated by down-welling currents. As fractional crystallisation proceeds, the magma ocean gets enriched in FeO which makes the cumulate to also get richer. Eventually, it becomes too dense to get entrained by mantle convection and starts to pile up at the bottom of the mantle, which inhibits direct mass flow through the phase change boundary. This allows a thermal boundary layer and hot plumes to develop.</p><p>This model therefore allows to explain the present existence of both residual partial melt and large scale compositional variations in the lower mantle, as evidenced by seismic velocity anomalies. It also predicts a regime change between early mantle convection dominated by down-welling flow to the onset of hot plumes in the more recent past.</p>


2013 ◽  
Vol 37 ◽  
pp. 19-25 ◽  
Author(s):  
K. Blanckaert ◽  
G. Constantinescu ◽  
W. Uijttewaal ◽  
Q. Chen

Abstract. Curved river reaches were investigated as an example of river configurations where three-dimensional processes prevail. Similar processes occur, for example, in confluences and bifurcations, or near hydraulic structures such as bridge piers and abutments. Some important processes were investigated in detail in the laboratory, simulated numerically by means of eddy-resolving techniques, and finally parameterized in long-term and large-scale morphodynamic models. Investigated flow processes include secondary flow, large-scale coherent turbulence structures, shear layers and flow separation at the convex inner bank. Secondary flow causes a redistribution of the flow and a transverse inclination of the riverbed, which favour erosion of the outer bank and meander migration. Secondary flow generates vertical velocities that impinge on the riverbed, and are known to increase the erosive capacity of the flow. Large-scale turbulent coherent structures also increase the sediment entrainment and transport capacity. Both processes are not accounted for in sediment transport formulae, which leads to an underestimation of the bend scour and the erosion of the outer bank. Eddy-resolving numerical models are computationally too expensive to be implemented in long-term and large-scale morphodynamic models. But they provide insight in the flow processes and broaden the investigated parameter space. Results from laboratory experiments and eddy-resolving numerical models were at the basis of the development of a new parameterization without curvature restrictions of secondary flow effects, which is applicable in long-term and large-scale morphodynamic models. It also led to the development of a new engineering technique to modify the flow and the bed morphology by means of an air-bubble screen. The rising air bubbles generate secondary flow, which redistributes the patterns of flow, boundary shear stress and sediment transport.


2021 ◽  
Vol 1 ◽  
pp. 165-167
Author(s):  
Tuanny Cajuhi ◽  
Jobst Maßmann ◽  
Gesa Ziefle

Abstract. Salt, crystalline and clay formations are under discussion as potential host rocks for storage of heat-generating radioactive waste. Each of these rocks has a different structure and composition, and consequently a different material behavior. The latter needs to be studied and evaluated with respect to the main aim: to find a place to store the waste in a safe and sustainable manner. Several requirements in the context of the safety of a repository need to be fulfilled, concerning the long-term as well as the operational phase. One key point in this matter is the integrity, which refers to retention of the isolating rock zone's containment capabilities. With the focus on some experimental and numerical investigations on the excavation influenced near-field behavior of Opalinus clay (OPA), this contribution aims to illustrate an example for the role of numerical modeling in safety assessment. Once, e.g. anthropogenic action such as excavation starts, the natural state of equilibrium in the formation is disturbed. Trying to restore it, the rock deforms (convergence) and/or releases energy in other ways such as cracking. This could lead to loss of integrity since crack nucleation and propagation can affect the mechanical stability and create paths to transport contaminants. During operation in the excavated rock, environmental changes, e.g. temperature and humidity, further affect its behavior. The understanding of these dynamic phenomena ideally needs to occur at the in situ scale; however, performing an experiment in the spatial and time scales of interest is not always possible. For this reason, the in situ problem needs to be formulated, abstracted and mathematically modeled. The interpretation of the results must take place with simplifying assumptions and complementary laboratory scale experiments can be used to improve understanding of the system. The real problem is approached stepwise, each step associated to the size of the model and its complexity. The gradually obtained knowledge is necessary to achieve a better understanding of the process and to evaluate the capacities and limitations of the models. This contribution aims at showing the basic practical steps for numerical modeling with particular focus on the preparation and interpretation of the models and results, e.g. model calibration, verification and validation. As an example, the OPA at the Mont Terri site is chosen. The material parameters are obtained either experimentally or from the literature. We choose and perform laboratory scale simulations that are related to nearly the same mechanism as in the in situ scale. To have a first impression on the latter, a simplified, large-scale numerical model is prepared. The mechanism in study is drying and wetting, which is associated with shrinkage and swelling. We analyze the pore pressure and stress development in both scales. Thus, hydraulic mechanically coupled approaches are essential. The concept of effective stress is used, which combines the contributions of the solid and fluid phases (gas and liquid). In the current modeling approach, the gas pressure remains constant (atmospheric pressure) and during drying, the liquid pressure induces capillary pressure development and decrease of saturation. The laboratory scale simulation is important to evaluate the model of choice and to assess potential numerical problems. Furthermore, it can be used to perform a sensitivity study of material and numerical parameters. This step is necessary during the development or extension of numerical models as well as to evaluate their applicability on new research questions. The simplified in situ scale numerical model is then extended. In this phase the numerical model is evaluated once again, especially with respect to its complexity. Furthermore, specific questions related to this scale are posed: overall behavior of the rock, influence of the excavation, seasonal and long-term effects. In this contribution we deal with the long-term cyclic deformation (CD-A) experiment. The CD-A experiment has been taking place in the Mont Terri Rock Laboratory since October 2019. It consists of twin niches, a closed and an open niche, subjected to either high air humidity or seasonal humidity changes leading to saturation/desaturation during summer/winter in the OPA, respectively. Several parameters are periodically or continuously measured, including relative air humidity, convergence and crack development. We attempt to transfer the knowledge and numerical models developed in the small scale to the large scale and to evaluate the possibilities and limitations of the chosen approaches by comparing the numerical and experimental results.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document