scholarly journals Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms

2013 ◽  
Vol 5 (2) ◽  
pp. 1901-1940
Author(s):  
A. Brüstle ◽  
W. Friederich ◽  
T. Meier ◽  
C. Gross

Abstract. Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic Subduction Zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only 7 seismograms from three different stations (STU, GTT, COP) could be used. Nevertheless, the grid search produces stable optimal values for both source depth and focal mechanism. Our results indicate a shallow hypocenter at about 25 km depth. The best-fitting focal mechanism is a SW–NE-trending normal fault dipping either by 30° towards SE or 60° towards NW. This finding is consistent with the local structure of the Santorini–Amorgos graben. For the second earthquake, 4 seismograms from three different stations (JEN, GTT, COP) proved suitable for waveform matching. Whereas it was impossible to obtain meaningful results for the focal mechanism owing to surface wave coda of the first event overlapping body wave phases of the second event, waveform matching and time-frequency analysis point to a considerably deeper hypocenter located within the Wadati–Benioff-zone of the subducting African plate at about 120–160 km depth.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1027-1044 ◽  
Author(s):  
A. Brüstle ◽  
W. Friederich ◽  
T. Meier ◽  
C. Gross

Abstract. Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic subduction zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording, such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only seven seismograms from three different stations at Stuttgart (STU), Göttingen (GTT) and Copenhagen (COP) could be used. Nevertheless, the waveform matching grid search yields two stable misfit minima for source depths of 25 and 50 km. Compatible fault plane solutions are either of normal faulting or thrusting type. A separate analysis of 42 impulsive first-motion polarities taken from the International Seismological Summary (ISS bulletin) excludes the thrusting mechanism and clearly favors a normal faulting solution with at least one of the potential fault planes striking in SW–NE direction. This finding is consistent with the local structure and microseismic activity of the Santorini–Amorgos graben. Since crustal thickness in the Amorgos area is generally less than 30 km, a source depth of 25 km appears to be more realistic. The second earthquake exhibits a conspicuously high ratio of body wave to surface wave amplitudes suggesting an intermediate-depth event located in the Hellenic Wadati–Benioff zone. This hypothesis is supported by a focal mechanism analysis based on first-motion polarities, which indicates a mechanism very different from that of the first event. A waveform matching grid search done to support the intermediate-depth hypothesis proved not to be fruitful because the body wave phases are overlain by strong surface wave coda of the first event inhibiting a waveform match. However, body to surface wave amplitude ratios of a modern intermediate-depth event with an epicenter close to the island of Milos observed at stations of the German Regional Seismic Network (GRSN) exhibit a pattern similar to the one observed for the second event with high values in a frequency band between 0.05 Hz and 0.3 Hz. In contrast, a shallow event with an epicenter in western Crete and nearly identical source mechanism and magnitude, shows very low ratios of body and surface wave amplitude up to 0.17 Hz and higher ratios only beyond that frequency. Based on this comparison with a modern event, we estimate the source depth of the second event to be greater than 100 km. The proximity in time and space of the two events suggests a triggering of the second, potentially deep event by the shallow first one.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chaolong Jia ◽  
Lili Wei ◽  
Hanning Wang ◽  
Jiulin Yang

Wavelet is able to adapt to the requirements of time-frequency signal analysis automatically and can focus on any details of the signal and then decompose the function into the representation of a series of simple basis functions. It is of theoretical and practical significance. Therefore, this paper does subdivision on track irregularity time series based on the idea of wavelet decomposition-reconstruction and tries to find the best fitting forecast model of detail signal and approximate signal obtained through track irregularity time series wavelet decomposition, respectively. On this ideology, piecewise gray-ARMA recursive based on wavelet decomposition and reconstruction (PG-ARMARWDR) and piecewise ANN-ARMA recursive based on wavelet decomposition and reconstruction (PANN-ARMARWDR) models are proposed. Comparison and analysis of two models have shown that both these models can achieve higher accuracy.


1970 ◽  
Vol 60 (3) ◽  
pp. 917-937 ◽  
Author(s):  
B. F. Howell ◽  
G. M. Lundquist ◽  
S. K. Yiu

Abstract Integrated magnitude substitutes the r.m.s. average amplitude over a pre-selected interval for the peak amplitude in the conventional body-wave magnitude formula. Frequency-band magnitude uses an equivalent quantity in the frequency domain. Integrated magnitude exhibits less scatter than conventional body-wave magnitude for short-period seismograms. Frequency-band magnitude exhibits less scatter than body-wave magnitude or integrated magnitude for both long- and short-period seismograms. The scatter of frequency-band magnitude is probably due to real azimuthal effects, crustal-transfer-function variations, errors in compensation for seismograph response, microseismic moise and uncertainties in the compensation for attenuation with distance. To observe azimuthal variations clearly, the crustal-transfer functions and seismograph response need to be known more precisely than was the case in this experiment, because these two sources of scatter can be large enough to explain all of the observed variations.


1999 ◽  
Vol 89 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
Yann Klinger ◽  
Luis Rivera ◽  
Henri Haessler ◽  
Jean-Christophe Maurin

Abstract On 22 November 1995 the largest earthquake instrumentally recorded in the area, with magnitude MW 7.3, occurred in the Gulf of Aqaba. The main rupture corresponding to the strike-slip mechanism is located within the gulf of Aqaba, which forms the marine extension of the Levantine fault, also known as the Dead Sea fault. The Levantine fault accommodates the strike-slip movement between the African plate and the Arabian plate. The Gulf of Aqaba itself is usually described as the succession of three deep pull-apart basins, elongated in the N-S direction. Concerning historical seismicity, only two large events have been reported for the last 2000 years, but they are still poorly constrained. The seismicity recorded since installation of regional networks in the early 1980s had been characterized by a low background level punctuated by brief swarmlike activity a few months in duration. Three swarms have already been documented in the Gulf of Aqaba in 1983, 1990, and 1993, with magnitudes reaching at most 6.1 (MW). We suggest that the geometry of the rupture for the 1995 event is related to the spatial distribution of these previous swarms. Body-wave modeling of broadband seismograms from the global network, along with the analysis of the aftershock distribution, allow us to propose a well-constrained model for the rupture process. Northward propagation of the rupture has been found. We have demonstrated that three successive subevents are necessary to obtain a good fit between observed and synthetic wave forms. The total seismic moment released was 7.42 × 1019 N-m. The location of the subsevents shows that the three stages of the rupture involve three different segments within the gulf. Substantial surface breakage showing only normal motion (up to 20 cm) affecting beachrock was observed along the Egyptian coast. We show that these ruptures are only a secondary feature and are in no case primary ruptures. The stress tensor derived from striations collected in quaternary sediments shows radial extension. This result supports landsliding of the beach terraces under the action of the earthquake shaking.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 65-83
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita de Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network, used to monitor natural and/or induced micro-seismicity, estimates focal mechanisms as a function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operating in the Campania–Lucania Apennines (southern Italy) aimed to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose is effective and can be adapted for other case studies with a double purpose. It can be a valid tool to design or to test the performance of local seismic networks, and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Pepen Supendi ◽  
Andri Dian Nugraha ◽  
Sri Widiyantoro ◽  
Chalid Idham Abdullah ◽  
Nanang T. Puspito ◽  
...  

AbstractOn September 28, 2018, the Mw 7.5 earthquake occurred in Palu, Central Sulawesi, Indonesia. This earthquake produced strong tremors, landslides, liquefaction and a tsunami and caused thousands of fatalities and damaged houses and infrastructure. We have relocated 386 of the 554 Palu aftershocks by using the double-difference relocation method (hypoDD) from September 28 to November 22, 2018. The aftershock pattern is consistent with the crustal deformation in the area and generally shows that the events have a NW–SE trending of ~ 200 km in length and ~ 50 km in width. Most of the aftershocks are located to the east of the Palu-Koro Fault Line. Since November 2, 2018, there have been hundreds of swarm earthquakes in the area of Mamasa, West Sulawesi, which is about 230 km south of the city of Palu. Some of these earthquakes were felt, and houses were even damaged. We have relocated 535 of the 556 swarm earthquakes having a magnitude of M 2 to M 5.4. Our results show that the seismicity pattern has a dip that becomes shallower to the west (dipping at a ~ 45° angle) and extends from north to south for a length of ~ 50 km. We also conducted a focal mechanism analysis to estimate the type of fault slip for selected events of an M > 4.5 magnitude. Most of the solutions of the focal mechanism analysis show a normal fault type. This swarm earthquake probably corresponds to the activity of the fault in the local area.


1971 ◽  
Vol 61 (6) ◽  
pp. 1827-1830
Author(s):  
Atiq A. Syed ◽  
Carl Kisslinger ◽  
Otto W. Nuttli

abstract Utilizing the observation that a predominant focal mechanism exists for a given hypocentral region, a seismic discriminant based on body-wave magnitude has been developed. This discriminant enables one to identify earthquakes that do not fit mechanisms expected from plate tectonics. It also sorts out explosions as anomalies, even for those regions in which the focal mechanism results in compressional first motions at most or all available seismograph stations.


Sign in / Sign up

Export Citation Format

Share Document