scholarly journals Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

2014 ◽  
Vol 6 (1) ◽  
pp. 1155-1190 ◽  
Author(s):  
L. Palazón ◽  
L. Gaspar ◽  
B. Latorre ◽  
W. Blake ◽  
A. Navas

Abstract. Soil in alpine environments plays a key role in the development of ecosystem. Identify, maintain and preserve its resources, as well as recognize processes that would affect them are important and of practical interest. Environmental concerns about these fragile systems which are threatened by the human pressure and climatic change have stressed the need to gather information in soil erosion processes. As most mountain alpine environment the Benasque catchment is characterized by temperatures below freezing that can last from November to April, strong rainfall events and rugged topography. Indirect studies, such as combined model approaches, could be an alternative to evaluate soil erosion on these areas. In this study the complementary tools of Soil and Water Assessment Tool (SWAT) and fingerprinting procedure were used to assess an initial approach on soil erosion processes which take place in the area of the Posets-Maladeta National Park (Central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources (Kastanozem/Phaeozem; Fluvisol; Cambisol and channel bed sediments) were assessed. SWAT model identified Cambisols as the main source of sediment of the Benasque catchment with the highest specific sediment yields and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter performed the highest and lowest specific sediment yield, respectively. Fingerprinting procedure identified channel bed sediment and Fluvisols as the main sediment sources indicating the main influence of connectivity. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 963-978 ◽  
Author(s):  
L. Palazón ◽  
L. Gaspar ◽  
B. Latorre ◽  
W. H. Blake ◽  
A. Navas

Abstract. Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood events but sediment fingerprinting identified areas that, due to high connectivity, contribute more to channel-stored sediment deposits.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


2010 ◽  
Vol 12 (4) ◽  
pp. 502-520 ◽  
Author(s):  
U. C. Kothyari ◽  
Raaj. Ramsankaran ◽  
D. Sathish Kumar ◽  
S. K. Ghosh ◽  
Nisha Mendiratta

An automated GIS tool and its computational outcomes on the spatial distribution of runoff and soil erosion are presented. The developed tool, named Automated Soil Erosion Assessment Tool (ASEAT), simulates runoff and soil erosion rates based on the concept of erosion processes suggested by Morgan–Morgan–Finney (MMF) in 1984. ASEAT is provided with a user-friendly graphical user interface (GUI) to interact with the users. The computational algorithms used are made fully automated and have been developed using the ERDAS Macro Language (EML) and Spatial Macro Language (SML). The developed modelling methodology is applied to the data of an experimental watershed of Pathri Rao in the Indian lower Himalayan region. Generated spatial distribution of runoff potential and soil erosion rates for the studied watershed using ASEAT are depicted by maps. The model-computed surface runoff potential (145.63 mm) available in the watershed seems fair when compared with the runoff depth (176.07 mm) observed at the watershed outlet. The derived estimates of soil erosion are validated, albeit qualitatively, with field observations and seem reliable for making decisions on the adoption of soil erosion conservative measures in the watershed.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2526
Author(s):  
Mario J. Al Sayah ◽  
Rachid Nedjai ◽  
Konstantinos Kaffas ◽  
Chadi Abdallah ◽  
Michel Khouri

The impact of ponds on basins has recently started to receive its well-deserved scientific attention. In this study, pond-induced impacts on soil erosion and sediment transport were investigated at the scale of the French Claise basin. In order to determine erosion and sediment transport patterns of the Claise, the Coordination of Information on the Environment (CORINE) erosion and Soil and Water Assessment Tool (SWAT) models were used. The impact of ponds on the studied processes was revealed by means of land cover change scenarios, using ponded versus pondless inputs. Results show that under current conditions (pond presence), 12.48% of the basin corresponds to no-erosion risk zones (attributed to the dense pond network), while 65.66% corresponds to low-erosion risk, 21.68% to moderate-erosion risk, and only 0.18% to high-erosion risk zones. The SWAT model revealed that ponded sub-basins correspond to low sediment yields areas, in contrast to the pondless sub-basins, which yield appreciably higher erosion rates. Under the alternative pondless scenario, erosion risks shifted to 1.12%, 0.52%, 76.8%, and 21.56% for no, low, moderate, and high-erosion risks, respectively, while the sediment transport pattern completely shifted to higher sediment yield zones. This approach solidifies ponds as powerful human-induced modifications to hydro/sedimentary processes.


2011 ◽  
Vol 15 (3) ◽  
pp. 807-818 ◽  
Author(s):  
G. D. Betrie ◽  
Y. A. Mohamed ◽  
A. van Griensven ◽  
R. Srinivasan

Abstract. Soil erosion/sedimentation is an immense problem that has threatened water resources development in the Nile river basin, particularly in the Eastern Nile (Ethiopia, Sudan and Egypt). An insight into soil erosion/sedimentation mechanisms and mitigation methods plays an imperative role for the sustainable water resources development in the region. This paper presents daily sediment yield simulations in the Upper Blue Nile under different Best Management Practice (BMP) scenarios. Scenarios applied in this paper are (i) maintaining existing conditions, (ii) introducing filter strips, (iii) applying stone bunds (parallel terraces), and (iv) reforestation. The Soil and Water Assessment Tool (SWAT) was used to model soil erosion, identify soil erosion prone areas and assess the impact of BMPs on sediment reduction. For the existing conditions scenario, the model results showed a satisfactory agreement between daily observed and simulated sediment concentrations as indicated by Nash-Sutcliffe efficiency greater than 0.83. The simulation results showed that applying filter strips, stone bunds and reforestation scenarios reduced the current sediment yields both at the subbasins and the basin outlets. However, a precise interpretation of the quantitative results may not be appropriate because some physical processes are not well represented in the SWAT model.


Author(s):  
Mario J. Al Sayah ◽  
Rachid Nedjai ◽  
Konstantinos Kaffas ◽  
Chadi Abdallah ◽  
Michel Khouri

The impact of ponds on basins has recently started to receive its well–deserved scientific attention. In this study, pond–induced impacts on soil erosion and sediment transport were investigated at the scale of the French Claise basin. In order to determine erosion and sediment transport patterns under current conditions, the CORINE erosion and SWAT models were used. The impact of ponds on the studied processes was revealed by means of land cover change scenarios, using ponded versus pondless inputs. Results show that under current conditions (pond presence), 12.48% of the basin corresponds to no–erosion risk zones (attributed to the dense pond network), while 65.66% corresponds to low–erosion risk, 21.68% to moderate–erosion risk and only 0.18% to high–erosion risk zones. The SWAT model revealed that ponded sub–basins correspond to low sediment yields areas, in contrast to the pondless sub–basins, which yield appreciably higher erosion rates. Under the alternative scenario, erosion risks shifted to 1.12%, 0.52%, 76.8% and 21.56% for no, low, moderate and high–erosion risks, respectively, while the sediment transport pattern of the Claise completely shifted to higher sediment yield zones. This approach solidifies ponds as powerful man–induced modifications to hydro/sedimentary processes.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


Author(s):  
W. D. Erskine ◽  
M. J. Saynor ◽  
K. Turner ◽  
T. Whiteside ◽  
J. Boyden ◽  
...  

Abstract. Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.


Author(s):  
R. J. Rickson ◽  
◽  
E. Dowdeswell Downey ◽  
G. Alegbeleye ◽  
S. E. Cooper ◽  
...  

Soil erodibility is the susceptibility of soil to the erosive forces of rainsplash, runoff and wind. It is a significant factor in determining present and future soil erosion rates. Focusing on soil erosion by water, this chapter shows that erodibility is determined by static and dynamic soil properties that control a range of sub-processes affecting soil erosion, but there is no standardised test procedure, making comparison of erodibility assessment techniques and their results challenging. Most researchers agree that aggregate stability is the best indicator of soil erodibility. Selection of techniques to measure aggregate stability need to consider the type of disruptive forces and breakdown processes to which field aggregates are subjected. New indices must incorporate spatial and temporal variabilities in erodibility; the different erosion processes operating; the impact of climate change; and the role of soil biology. New analytical techniques such as computer aided tomography show promise in considering soil erodibility as a dynamic continuum operating over 3 dimensions.


Sign in / Sign up

Export Citation Format

Share Document