scholarly journals Changes in soil quality due to converting <i>Pinus</i> to <i>Eucalyptus</i> plantations and subsequent successive <i>Eucalyptus</i> planting in southern China

2014 ◽  
Vol 6 (2) ◽  
pp. 2779-2802
Author(s):  
K. Zhang ◽  
H. Zheng ◽  
F. L. Chen ◽  
Z. Y. Ouyang ◽  
Y. Wang ◽  
...  

Abstract. Plants play a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and 1st, 2nd, 3rd and 4th generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index (SQI) was calculated. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities significantly decreased in the 1st and 2nd generations of Eucalyptus plantations after conversion from Pinus to Eucalyptus but gradually recovered in the 3rd and 4th generations. Soil total and available potassium were significantly lower, but total phosphorus was significantly higher in Eucalyptus plantations compared to the Pinus plantation. As an integrated indicator, SQI was highest in the Pinus plantation (0.92), but decreased to 0.24 and 0.13 in the 1st and 2nd generations of Eucalyptus plantations, respectively. However, it recovered to 0.36 and 0.38 in the 3rd and 4th generations, respectively. Changing tree species, reclamation and fertilization may have contributed to the "U" shaped change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understory coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality during plantation management.

Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 115-123 ◽  
Author(s):  
K. Zhang ◽  
H. Zheng ◽  
F. L. Chen ◽  
Z. Y. Ouyang ◽  
Y. Wang ◽  
...  

Abstract. Vegetation plays a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and first, second, third and fourth generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index was calculated using principal component analysis. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities were significantly lower in the first and second generations of Eucalyptus plantations compared with Pinus plantation, but they were significantly higher in the third and fourth generations than in the first and second generations and significantly lower than in Pinus plantation. Soil total and available potassium were significantly lower in Eucalyptus plantations (1.8–2.5 g kg−1 and 26–66 mg kg−1) compared to the Pinus plantation (14.3 g kg−1 and 92 mg kg−1), but total phosphorus was significantly higher in Eucalyptus plantations (0.9–1.1 g kg−1) compared to the Pinus plantation (0.4 g kg−1). As an integrated indicator, soil quality index was highest in the Pinus plantation (0.92) and lowest in the first and second generations of Eucalyptus plantations (0.24 and 0.13). Soil quality index in the third and fourth generations (0.36 and 0.38) was between that in Pinus plantation and in first and second generations of Eucalyptus plantations. Changing tree species, reclamation and fertilization may have contributed to the change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understorey coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality.


2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lihong Wang ◽  
Qiang Fu

Forest fires significantly change soil function and quality. Finding an effective way to accelerate the restoration of soil quality after forest fires is a major issue. This study investigated the soil quality index (SQI) during vegetation restoration after a fire in a Larix gmelinii plantation, throughout different restoration years. Fifteen physical, chemical, and biological properties of soil were examined using principal component analysis, and soil quality was assessed by SQI. The results revealed that soil physical properties, chemical properties, and enzyme activities showed the most improvement after 24 yr of restoration. Soil microbial biomass carbon content and microbial biomass nitrogen content increased with restoration years. Soil bulk density, microbial biomass nitrogen, sucrase, and catalase were retained in the minimum data set. After 24 yr of restoration, SQI was the highest, with a value of 0.52, followed by natural restoration, 21, 13, and 16 yr; the SQI after 3 yr of restoration was the lowest, with a value of 0.26. Artificial regeneration accelerated the recovery of soil quality after 24 yr. Soil quality should be monitored continuously in the study area.


Soil Research ◽  
2018 ◽  
Vol 56 (1) ◽  
pp. 49 ◽  
Author(s):  
Smrita Buragohain ◽  
Banashree Sarma ◽  
Dhruba J. Nath ◽  
Nirmali Gogoi ◽  
Ram S. Meena ◽  
...  

In the present study, field experiments were performed over 10 consecutive years (2006–15) to assess the effects of biofertiliser and enriched biocompost on soil quality, total organic carbon (TOC) and rice yields in an Inceptisol. Experiments were conducted in a randomised block design with four replicates and five treatments: unfertilised control (T1); recommended doses of inorganic fertiliser (T2); biofertiliser with reduced (50%) inorganic N and P fertilisers (T3); reduced (50%) inorganic N and P fertilisers with 1 t ha–1 enriched biocompost (T4); and reduced (75%) inorganic N and P fertilisers with 2 t ha–1 enriched biocompost (T5). T3 improved soil chemical and biological properties with enhanced soil quality index (40%), total P (23%), total K (42%) and fungal (38%) and bacterial (44%) colony counts. T5 significantly improved the carbon pool index (29%) and available nutrients (N, P and K at rates of 37%, 22% and 10% respectively) and increased soil pH (11%), resulting in a higher sustainable yield index (39%) of rice. Fraction 2 (labile carbon) of TOC, total P, available K, microbial biomass carbon and phosphate-solubilising bacteria were key indicators to assess the suitability of these fertilisers in rice cultivation in north-east India.


2022 ◽  
Vol 9 ◽  
Author(s):  
M. M. Rahman ◽  
Md. Rafiqul Islam ◽  
Shihab Uddin ◽  
Mohammad Mahmudur Rahman ◽  
Ahmed Gaber ◽  
...  

Soil acidification and charland formation through alluvial sand deposition are emerging threats to food security in Bangladesh in that they endanger crop production in about 35% of its territory. The integrated plant nutrient system (IPNS) is a globally accepted nutrient management approach designed to revive the damaged soils’ fertility level. Total organic carbon (TOC) in soil is a composite index of soil quality that has consequences for agricultural productivity and natural soil ecosystems. This study assesses the impacts of using biochar, compost, poultry litter, and vermicompost-based IPNS approaches on labile and TOC pools, TOC stocks, lability and management indices, and microbial populations under different cropping patterns after 2 years in acidic and charland soils. The application of IPNS treatments increased microbial biomass carbon (MBC) by 9.1–50.0% in acidic soil and 8.8–41.2% in charland soil compared to the untreated soil, with the largest increase in poultry manure biochar (PMB). Microbial biomass nitrogen (MBN) rose from 20 to 180% in charland soil compared to the control, although no effect was observed in acidic soil. Basal respiration (BR) rose by 43–429% in acidic soil and 16–189% in charland soil compared to the control, exhibiting the highest value in PMB. IPNS treatments significantly improved SOC and POC but did not affect POXc and bulk density in both soils. The PMB and organic fertilizer (OF, compost)-based IPNS wielded the greatest influence on the lability index of MBC in acidic soils and the management index of MBC in both soils. This is despite the fact that IPNS did not affect the lability and management indices of active carbon (AC). IPNS treatments increased the stocks of SOC and MBC in both the soils and POC stock in acidic soil. IPNS treatments significantly boosted the bacterial and fungal populations in both soils, despite having no effect on phosphorus-solubilizing bacteria (PSB). Thus, PMB and OF (compost)-based IPNS may be a better nutrient management practice in degraded acidic and charland soils. This is especially the case in terms of soil quality improvement, soil carbon sequestration, and microbial enrichment.


2011 ◽  
Vol 149 (4) ◽  
pp. 497-505 ◽  
Author(s):  
W. KAIYONG ◽  
F. HUA ◽  
T. RANAB ◽  
M. A. HANJRAC ◽  
D. BO ◽  
...  

SUMMARYCotton is the dominant crop in the northern Xinjiang oasis of China; it accounts for 0·78 of the total planting area and represents a major contribution to economic development. The objective of the present study is to determine how cotton plantation age affected chemical and microbiological properties of the soil. The time substitution method was used on plantation farmlands, reclaimed from uncultivated land 0, 5, 10, 15 and 20 years ago. A total of 250 soil samples, at depths of 0–200, 200–400, 400–600, 600–800 and 800–1000 mm, were collected from cotton fields in 10 farms of each age category. There were significant differences in soil organic carbon (SOC), total soil nitrogen (TSN), soil available nitrogen (SAN), soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN). There were also differences in the activities of cellulase, invertase and urease between soil layers and plantation ages, and these were most evident in the 200–400 mm layer. The cumulative rates of SOC and SMBC in the 0–1000 mm soil layer at the 5-, 10-, 15- and 20-year sites were 0·89, 0·99, 1·01 and 0·92 mg/kg/yr and 16, 16, 16 and 15 mg/kg/yr, respectively, compared to that at the control site (0 year). The cumulative amounts of SOC and SMBC increased gradually and then decreased, reaching a maximum at plantation ages of 13·1 years and 11·1 years, respectively. This suggests that incorporation of post-harvest cotton residues could be used as an effective measure to improve SOC in farmland of Xinjiang Oasis, and may be recommended for adoption in cotton growing in semi-arid oasis agriculture.


2000 ◽  
Vol 80 (3) ◽  
pp. 483-488 ◽  
Author(s):  
Y. K. Soon ◽  
W. A. Rice ◽  
M. A. Arshad ◽  
P. Mills

Pipeline construction on the Grey soils of the Canadian boreal plains, which have a thin Ah horizon, could have considerable impact on their properties and productivity. This study was conducted because the effects of pipeline installation on crop yield and biological properties of these soils have not been well-documented. Soil was sampled from a Grey Luvisol and a Dark Grey Solod prior to pipeline construction in 1991, and in each of the following 3 yr. The right-of-way (RoW) was divided into three zones: a road (or work) area used for vehicular traffic; a trench where the pipeline was buried; and a pile (or spoil) area where soil was stockpiled during construction. The RoW was cropped to barley (Hordeum vulgare L.) in 1992 through 1994. Barley yield was low in 1992 (830–1120 kg ha−1), and near average (2050–3290 kg ha−1) in 1993 and 1994. Except for low shoot P concentration (1.1–1.3 mg g−1) in 1992, macronutrient concentrations (N, P and K) in barley tissues were within normal ranges. Soil organic carbon was reduced by 12–28% in all RoW areas in 1993 and 1994. Soil total N was reduced by 29–49% in all RoWs in 1992 and increased slightly from those levels in 1993 and 1994. Pipeline construction affected soil microbial biomass carbon (MBC) in the three RoW areas differently, and the effect was not consistent from year to year. However, the average level of MBC was not adversely impacted. In 1994, soil phosphatase activity in the RoW zones tended to be lower as compared to pre-pipeline installation, particularly in the pile area of the Dark Grey Solod. It is concluded that although some soil biological properties were degraded by pipeline construction, and barley yield was reduced in 1992, crop production in the following 2 yr was not significantly affected. Key words: Barley, carbon, microbial biomass, nitrogen, phosphatase, pipeline


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Zheng ◽  
Xiaori Han ◽  
Yuying Li ◽  
Jinfeng Yang ◽  
Na Li ◽  
...  

Abstract Applying biochar to soil has been proposed as a strategy to enhance soil quality and crop productivity. To further evaluate the influence of biochar and straw application on soil fertility and crop yield, a five-year fixed site field experiment was conducted in a paddy field in Northeast China. The experimental design included six treatments: control (CK), biochar (C), straw (S), chemical fertilizers (NPK), biochar with chemical fertilizer (CNPK) and straw with chemical fertilizer (SNPK). The results showed that compared with the NPK treatment, CNPK and SNPK significantly increased soil total porosity, soil air permeability coefficient, soil organic carbon (SOC), C/N ratio, soil microbial biomass carbon (SMBC)‚ soil microbial biomass nitrogen (SMBN), invertase activity and rice yield. Furthermore, amendment of biochar had a better effect on SOC, C/N ratio, SMBC, and SMBN than that of straw. In addition, SMBC, SOC, and total nitrogen (TN) had significant correlations with soil enzyme activities. Therefore, amendment of biochar with chemical fertilizer is an effective measure to improve rice production and soil quality in the northeast of China.


Land ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 63 ◽  
Author(s):  
Sheikh Adil Edrisi ◽  
Vishal Tripathi ◽  
Purushothaman Chirakkuzhyil Abhilash

The successful utilization of marginal and degraded lands for biomass and bioenergy production depends upon various factors such as climatic conditions, the adaptive traits of the tree species and their growth rate and respective belowground responses. The present study was undertaken to evaluate the growth performance of a bioenergy tree (Dalbergia sissoo Roxb.) grown in marginal and degraded land of the Mirzapur district of Uttar Pradesh, India and to analyze the effect of D. sissoo plantations on soil quality improvement over the study years. For this, a soil quality index (SQI) was developed based on principal component analysis (PCA) to understand the effect of D. sissoo plantations on belowground responses. PCA results showed that among the studied soil variables, bulk density (BD), moisture content (MC), microbial biomass carbon (MBC) and soil urease activity (SUA) are the key variables critically influencing the growth of D. sissoo. The SQI was found in an increasing order with the growth period of D. sissoo. (i.e., from 0.419 during the first year to 0.579 in the fourth year). A strong correlation was also observed between the growth attributes (diameter at breast height, R2 = 0.870; and plant height, R2 = 0.861) and the soil quality (p < 0.01). Therefore, the developed SQI can be used as key indicator for monitoring the restoration potential of D. sissoo growing in marginal and degraded lands and also for adopting suitable interventions to further improve soil quality for multipurpose land restoration programs, thereby attaining land degradation neutrality and United Nations Sustainable Development Goals.


Author(s):  
Eduardo A. A. Barbosa ◽  
Edson E. Matsura ◽  
Leonardo N. S. dos Santos ◽  
Aline A. Nazário ◽  
Ivo Z. Gonçalves ◽  
...  

ABSTRACT Using domestic sewage to irrigate and supply nutrients to plants is a sustainable practice; however, due to the physical and chemical properties of the domestic sewage, soil attributes and quality may be changed with its application. The aim of this study was to evaluate soil quality after two cycles of sugarcane irrigated with treated domestic sewage and surface reservoir water via subsurface drip irrigation, with and without nutritional supplementation by fertigation, and a non-irrigated control with top-dressing fertilization. Soil quality was established by applying the methodology proposed by Karlen & Stott. Physical, chemical and microbiological indicators were selected to compose the basic soil functions used to determine the quality index. Application of treated domestic sewage with fertigation increased soil electrical conductivity, Na+ content and exchangeable sodium percentage. Reservoir water applications with fertigation increased microbial biomass carbon and reduced the metabolic quotient, besides promoting significant effects on soil acidification indicators in comparison to reservoir water irrigation without fertigation. Despite the alteration of some soil attributes, no significant changes in the soil quality index were observed among the treatments.


Sign in / Sign up

Export Citation Format

Share Document