scholarly journals Evaluating a prediction system for snow management

2021 ◽  
Vol 15 (8) ◽  
pp. 3949-3973
Author(s):  
Pirmin Philipp Ebner ◽  
Franziska Koch ◽  
Valentina Premier ◽  
Carlo Marin ◽  
Florian Hanzer ◽  
...  

Abstract. The evaluation of snowpack models capable of accounting for snow management in ski resorts is a major step towards acceptance of such models in supporting the daily decision-making process of snow production managers. In the framework of the EU Horizon 2020 (H2020) project PROSNOW, a service to enable real-time optimization of grooming and snow-making in ski resorts was developed. We applied snow management strategies integrated in the snowpack simulations of AMUNDSEN, Crocus, and SNOWPACK–Alpine3D for nine PROSNOW ski resorts located in the European Alps. We assessed the performance of the snow simulations for five winter seasons (2015–2020) using both ground-based data (GNSS-measured snow depth) and spaceborne snow maps (Copernicus Sentinel-2). Particular attention has been devoted to characterizing the spatial performance of the simulated piste snow management at a resolution of 10 m. The simulated results showed a high overall accuracy of more than 80 % for snow-covered areas compared to the Sentinel-2 data. Moreover, the correlation to the ground observation data was high. Potential sources for local differences in the snow depth between the simulations and the measurements are mainly the impact of snow redistribution by skiers; compensation of uneven terrain when grooming; or spontaneous local adaptions of the snow management, which were not reflected in the simulations. Subdividing each individual ski resort into differently sized ski resort reference units (SRUs) based on topography showed a slight decrease in mean deviation. Although this work shows plausible and robust results on the ski slope scale by all three snowpack models, the accuracy of the results is mainly dependent on the detailed representation of the real-world snow management practices in the models. As snow management assessment and prediction systems get integrated into the workflow of resort managers, the formulation of snow management can be refined in the future.

2021 ◽  
Author(s):  
Pirmin Philipp Ebner ◽  
Franziska Koch ◽  
Valentina Premier ◽  
Carlo Marin ◽  
Florian Hanzer ◽  
...  

Abstract. The evaluation of snowpack models capable of accounting for snow management in ski resorts is a major step towards acceptance of such models in supporting the daily decision-making process of snow production managers. In the frame of the EU H2020 project PROSNOW, a service to enable real-time optimisation of grooming and snow-making in ski resorts was developed. We applied snow management strategies integrated in the snowpack simulations of AMUNDSEN, Crocus and SNOWPACK/Alpine3D for nine PROSNOW ski resorts located in the European Alps. We assessed the performance of the snow simulations for five winter seasons (2015–2020) using both, ground-based data (GNSS measured snow depth) and space-borne snow maps derived from Copernicus Sentinel-2. Particular attention has been devoted to characterize the spatial performance of the simulated piste snow management at a resolution of 10 meters. The simulated results showed a high overall accuracy of more than 80 % compared to the Sentinel-2 data. Moreover, the correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly due to the impact of snow redistribution by skiers or spontaneous local adaptions of the snow management, which were not reflected in the simulations. Subdividing each individual ski resort in differently-sized ski resort reference units (SRU) based on topography showed a slight decrease in mean deviation. Although this work shows plausible and robust results on the ski-slope scale by all three snowpack models, the accuracy of the results is mainly dependent on the detailed representation of the real-world snow management practices in the models. This calls for an assessment of impacts from meteorological station measurements and their interpolations in the ski resorts as well as potential limitations in describing the snow cover, especially managed snow, by simulations.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Marina Pintar ◽  
Bostjan Mali ◽  
Hojka Kraigher

AbstractThe study was performed on the ski resort Krvavec, which is one of the most frequented ski resorts in Slovenia. The ski slopes serve as pastures for cattle during summer time and range from 1500 to 2000 m a.s.l., which is at or above the upper timberline. To offer a longer ski season and to profit snow better (either natural or artificial one) the slopes have been levelled and consequently the soil profile has been changed. Such altered soil profile characteristics strongly impact hydrological functions of soils.To study these impacts, five plots (20 × 20 m) have been chosen on the slopes with a different history: pasture without any amelioration work, a patch of forest in the ski resort without any ameliorations, and three plots with different intensity of amelioration.Dynamics of soil water content on each plot has been determined by measuring soil water content in-situ with portable TDR system during several days after long lasting heavy rains. Statistically significant differences were shown in soil water content between the plots after the rain, although some differences between plots have disappeared in the following days.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-49
Author(s):  
Robbi H Pritchard

Abstract Changes in cow-calf operations and management need to be deliberate and focus on consumer preferences that are substantive and enduring. For the sake of argument these preference changes could include: 1) continued erosion of the image of the cattle industry; 2) growth in demand of high quality grade beef, likely branded, and available at an affordable price; 3) production systems that yield improvements in cattle health, have a lesser environmental impact, and demonstrate prudent animal care and well-being; 4) Specification systems that may or may not include stipulations such as grass fed or non-implanted. At the ranch level there will be continued pressure to pursue rapid, efficient growth, marbling, structural soundness, and immunocompetence via genetic selection. A major step to reduce health problems is to reduce co-mingling. To achieve this goal breeding programs will change to improve the genetic and phenotypic uniformity and possibly the heterosis of the calf crop on each ranch. The National calving season needs to be more uniformly distributed throughout the year. New, more relevant cattle performance metrics will be developed. Calves that fit a branded production stream will have more value. Production streams that require Verified processes will be inequitably distributed across herd size because of associated costs, forcing smaller herds to either coop, vertically integrate, or accept generic cattle prices. Because of the diversity of environments and corresponding compatible bio-types of cows, identifying the profitable combination of specific branded systems with the genetics, calving season, labor, resource management and nutrition program of the ranch is very complicated. It will be increasingly necessary to put incremental response assessments in the context of the greater production-product system. Successful adaptors will place a much greater reliance on strong technical support in the areas of genetics, nutrition, growth, animal handling, documentation, and branded production streams.


2021 ◽  
Vol 13 (22) ◽  
pp. 4691
Author(s):  
Tianwen Feng ◽  
Xiaohua Hao ◽  
Jian Wang ◽  
Hongyi Li ◽  
Juan Zhang

High-resolution Synthetic Aperture Radar (SAR), as an efficient Earth observation technology, can be used as a complementary means of observation for snow depth (SD) and can address the spatial heterogeneity of mountain snow. However, there is still uncertainty in the SD retrieval algorithm based on SAR data, due to soil surface scattering. The aim of this study is to quantify the impact of soil signals on the SD retrieval method based on the cross-ratio (CR) of high-spatial resolution SAR images. Utilizing ascending Sentinel-1 observation data during the period from November 2016 to March 2020 and a CR method based on VH- and VV-polarization, we quantitatively analyzed the CR variability characteristics of rock and soil areas within typical thick snow study areas in the Northern Hemisphere from temporal and spatial perspectives. The correlation analysis demonstrated that the CR signal in rock areas at a daily timescale shows a strong correlation (mean value > 0.60) with snow depth. Furthermore, the soil areas are more influenced by freeze-thaw cycles, such that the monthly CR changes showed no or negative trend during the snow accumulation period. This study highlights the complexity of the physical mechanisms of snow scattering during winter processes and the influencing factors that cause uncertainty in the SD retrieval, which help to promote the development of high-spatial resolution C-band data for snow characterization applications.


OENO One ◽  
2019 ◽  
Vol 53 (1) ◽  
Author(s):  
Nicolas Devaux ◽  
Thomas Crestey ◽  
Corentin Leroux ◽  
Bruno Tisseyre

Aim: The aim of this short note is to provide first insights into the ability of Sentinel-2 images to monitor vine growth across a whole season. It focuses on verifying the practical temporal resolution that can be reached with Sentinel-2 images, the main stages of Mediterranean vineyard development as well as potential relevant agronomic information that can be seen on the temporal vegetation curves arising from Sentinel-2 images.Methods and results: The study was carried out in 2017 in a production vineyard located in southern France, 2 km from the Mediterranean seashore. Sentinel-2 images acquired during the whole vine growing cycle were considered, i.e. between the 3rd of March 2017 and the 10th of October 2017. The images were used to compute the classical normalized difference vegetation index (NDVI). Time series of NDVI values were analyzed on four blocks chosen for exhibiting different features, e.g. age, missing plants, weeding practices. The practical time lag between two usable images was closer to 16 days than to the 10 theoretical days (with only one satellite available at the date of the experiment), i.e. near 60% of the theoretical one. Results show that it might be possible to identify i) the main steps of vine development (e.g. budburst, growth, trimming, growth stop and senescence), ii) weed management and inter-row management practices, and iii) possible reasons for significant inter-block differences in vegetative expression (e.g. young vines that have recently been planted, low-productive blocks affected by many missing vines).Conclusions: Although this experiment was conducted at a time when Sentinel-2b was not fully operational, results showed that a sufficient number of usable images was available to monitor vine development. The availability of two Sentinel satellites (2a and 2b) in upcoming seasons should increase the number of usable images and the temporal resolution of the time series. This study also showed the limitations of the Sentinel-2 images’ resolution to provide within-block information in the case of small blocks or blocks with complex borders or both.Significance and impact of the study: This technical note demonstrated the potential of Sentinel-2 images to characterize vineyard blocks’ vigor and to monitor winegrowers’ practices at a territorial (regional) scale. The impact of management operations such as weeding and trimming, along with their incidence on canopy size, were observed on the NDVI time series. Some relevant parameters (slope, maximum values) may be derived from the NDVI time series, providing new insights into the monitoring of vineyards at a large scale. These results provided areas for further investigation, especially regarding the development of new indicators to characterize block-climate relationships.


2018 ◽  
Vol 15 (2) ◽  
pp. 1-20
Author(s):  
Sabri Embi ◽  
Zurina Shafii

The purpose of this study is to examine the impact of Shariah governance and corporate governance (CG) on the risk management practices (RMPs) of local Islamic banks and foreign Islamic banks operating in Malaysia. The Shariah governance comprises the Shariah review (SR) and Shariah audit (SA) variables. The study also evaluates the level of RMPs, CG, SR, and SA between these two type of banks. With the aid of SPSS version 20, the items for RMPs, CG, SR, and SA were subjected to principal component analysis (PCA). From the PCA, one component or factor was extracted each for the CG, SR, and RMPs while another two factors were extracted for the SA. Primary data was collected using a self-administered survey questionnaire. The questionnaire covers four aspects ; CG, SR, SA, and RMPs. The data received from the 300 usable questionnaires were subjected to correlation and regression analyses as well as an independent t-test. The result of correlation analysis shows that all the four variables have large positive correlations with each other indicating a strong and significant relationship between them. From the regression analysis undertaken, CG, SR, and SA together explained 52.3 percent of the RMPs and CG emerged as the most influential variable that impacts the RMPs. The independent t-test carried out shows that there were significant differences in the CG and SA between the local and foreign Islamic banks. However, there were no significant differences between the two types of the bank in relation to SR and RMPs. The study has contributed to the body of knowledge and is beneficial to academicians, industry players, regulators, and other stakeholders.


2020 ◽  
Vol 18 (7) ◽  
pp. 1216-1231
Author(s):  
K.A. Nefedova ◽  
D.O. Maslakova

Subject. This article discusses the issues of development of the Krasnaya Polyana resort area. Objectives. The article aims to assess the competitive ability and attractiveness of this resort area through developing indicators. Methods. For the study, we used a comparative analysis, and factor and ranking score techniques. Results. The article offers original methods to assess the competitiveness of the ski resort area and describes possible directions to increase and improve the competitiveness and attractiveness of ski resorts. Conclusions. Comprehensive development indicators help assess the competitive ability of the ski resort area. Modified expert, sociological, rating, and differential methods contribute to the effective management of the resort area's advantages.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


Sign in / Sign up

Export Citation Format

Share Document