scholarly journals Seasonal and Diurnal Dynamics of Subglacial Channels: Observations Beneath an Alpine Glacier

Author(s):  
Ugo Nanni ◽  
Florent Gimbert ◽  
Christian Vincent ◽  
Dominik Gräff ◽  
Fabian Walter ◽  
...  

Abstract. Water flowing below glaciers exerts a major control on glacier basal sliding speeds. However, our knowledge on the physics of subglacial hydrology and its link with sliding is limited by lacking observations. Here we use a two-year long dataset made of on-ice measured seismic and in-situ measured glacier basal sliding speed records on the Glacier d’Argentière (French Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory and concomitant measurements of water discharge, we quantify temporal changes in channels hydraulic radius and hydraulic pressure gradient. At seasonal timescales we observe, for the first time, that hydraulic radius and hydraulic pressure gradient present a four-fold increase from spring to summer, followed by a comparable decrease towards autumn. At low discharge during the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime that is consistent with predictions of channels behaving at equilibrium. In contrast, at high discharge and high short-term water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behavior that is consistent with channels being out-of-equilibrium. This out-of-equilibrium regime is further supported by observations at the diurnal scale, which demonstrate that channels pressurize in the morning and depressurize in the afternoon. During summer we also observe high and sustained basal sliding speeds, supporting that the widespread inefficient drainage system (cavities) is likely pressurized concomitantly with the channel-system. We propose that pressurized channels help sustain high pressure in cavities (and therefore high glacier sliding speeds) through an efficient hydraulic connection between the two systems. Using the two regimes herein observed in channels seasonal-dynamics as constraints for subglacial hydrology/ice dynamics models may allow to strengthen our knowledge on the physics of subglacial processes.


2020 ◽  
Vol 14 (5) ◽  
pp. 1475-1496 ◽  
Author(s):  
Ugo Nanni ◽  
Florent Gimbert ◽  
Christian Vincent ◽  
Dominik Gräff ◽  
Fabian Walter ◽  
...  

Abstract. Water flowing below glaciers exerts a major control on glacier basal sliding. However, our knowledge of the physics of subglacial hydrology and its link with sliding is limited because of lacking observations. Here we use a 2-year-long dataset made of on-ice-measured seismic and in situ-measured glacier basal sliding speed on Glacier d'Argentière (French Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory and concomitant measurements of water discharge, we quantify temporal changes in channels' hydraulic radius and hydraulic pressure gradient. At seasonal timescales we find that hydraulic radius and hydraulic pressure gradient respectively exhibit a 2- and 6-fold increase from spring to summer, followed by comparable decrease towards autumn. At low discharge during the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime that is consistent with predictions of channels' behaviour at equilibrium. In contrast, at high discharge and high short-term water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behaviour that is consistent with channels behaving out of equilibrium. This out-of-equilibrium regime is further supported by observations at the diurnal scale, which prove that channels pressurize in the morning and depressurize in the afternoon. During summer we also observe high and sustained basal sliding speed, which supports that the widespread inefficient drainage system (cavities) is likely pressurized concomitantly with the channel system. We propose that pressurized channels help sustain high pressure in cavities (and therefore high glacier sliding speed) through an efficient hydraulic connection between the two systems. The present findings provide an essential basis for testing the physics represented in subglacial hydrology and glacier sliding models.



2007 ◽  
Vol 53 (181) ◽  
pp. 232-240 ◽  
Author(s):  
Eyjólfur Magnússon ◽  
Helmut Rott ◽  
Helgi Björnsson ◽  
Finnur Pálsson

AbstractWe have analyzed InSAR data from the ERS-1/ERS-2 tandem mission, to study the ice dynamics of Vatnajökull, Iceland, during jökulhlaups from the Skaftá cauldrons and the Grímsvötn geothermal area, which drained under the Tungnaárjökull and Skeiðarárjökull outlets, respectively. During the initial phase of a Grímsvötn jökulhlaup in March 1996, the velocity of Skeiðarárjökull increased up to three-fold (relative to observed velocities in December 1995) over an area up to 8 km wide around the subglacial flood path. Accumulation of water was observed at one location in the flood path. During a small jökulhlaup from the Skaftá cauldrons in October 1995 the velocity on Tungnaárjökull increased up to four-fold over a 9 km wide area. The velocity increase was observed 1.5 days before the floodwater was detected in the river Skaftá. A reduced glacier speed as the flood peaked in Skaftá indicates evolution of the subglacial drainage system from sheet to tunnel flow. The glacier acceleration and local uplift, observed in the early phase of both jökulhlaups, supports the concept that increased water inflow in a narrow tunnel system causes water pressure to rise and forces water into areas outside the channels, thus reducing the coupling of ice with the glacier bed.



2018 ◽  
Vol 64 (248) ◽  
pp. 897-916 ◽  
Author(s):  
BASILE DE FLEURIAN ◽  
MAURO A. WERDER ◽  
SEBASTIAN BEYER ◽  
DOUGLAS J. BRINKERHOFF ◽  
IAN DELANEY ◽  
...  

ABSTRACTSubglacial hydrology plays a key role in many glaciological processes, including ice dynamics via the modulation of basal sliding. Owing to the lack of an overarching theory, however, a variety of model approximations exist to represent the subglacial drainage system. The Subglacial Hydrology Model Intercomparison Project (SHMIP) provides a set of synthetic experiments to compare existing and future models. We present the results from 13 participating models with a focus on effective pressure and discharge. For many applications (e.g. steady states and annual variations, low input scenarios) a simple model, such as an inefficient-system-only model, a flowline or lumped model, or a porous-layer model provides results comparable to those of more complex models. However, when studying short term (e.g. diurnal) variations of the water pressure, the use of a two-dimensional model incorporating physical representations of both efficient and inefficient drainage systems yields results that are significantly different from those of simpler models and should be preferentially applied. The results also emphasise the role of water storage in the response of water pressure to transient recharge. Finally, we find that the localisation of moulins has a limited impact except in regions of sparse moulin density.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dominik Gräff ◽  
Fabian Walter

AbstractRepeating earthquakes are a global phenomenon of tectonic faults. Multiple ruptures on the same fault asperities lead to nearly identical waveforms characteristic for these seismic events. We identify their microseismic counterparts beneath an Alpine glacier, where basal sliding accounts for a significant amount of ice flow. In contrast to tectonic faults, Alpine glacier beds are subject to large variations in sliding velocity and effective normal stresses. This leads to inter- and sub-seasonal variations in released seismic moment from stick–slip asperities, which we explain with the rate-and-state friction formalism. During summer, numerically modelled effective normal stresses at asperities are three times higher than in winter, which increases the local shear resistance by the same factor. Stronger summer asperities therefore tend to form in bed regions well connected to the efficient subglacial drainage system. Moreover, asperities organise themselves into a state of subcriticality, transferring stresses between each other. We argue that this seismic stick–slip behavior has potentially far-reaching consequences for glacier sliding and in particular for catastrophic failure of unstable ice masses.



2020 ◽  
Author(s):  
Basile de Fleurian ◽  
Petra Langebroek ◽  
Paul Halas

<p>In recent years, temperatures over the Greenland ice sheet have been rising leading to an increase in surface melt.  Projections show that this augmentation of surface melt will continue in the future and spread to higher elevations. As it increases, melt leads to two different feedbacks on the dynamic of the Greenland ice sheet. This augmentation of melt lowers the ice surface and changes its overall geometry hence impacting the ice dynamics through ice deformation. The other feedback comes into play at the base of glaciers. Here, the increase of water availability will impact the distribution of water pressure at the base of glaciers and hence their sliding velocity. The first feedback is relatively well known and relies on our knowledge of the rheology and deformation of ice. The lubrication feedback acting at the bed of glaciers is however highly uncertain on time scales longer than a season. Here we apply the  Ice  Sheet  System  Model  (ISSM)  to  a  synthetic  glacier  which  geometry  is  similar to the one of a Greenland ice sheet land terminating glacier. The dynamic contributions from ice deformation and sliding are separated to study their relative evolution. This is permitted by the use of a dynamical subglacial hydrology model that allows to link the basal sliding to the meltwater production through an appropriate friction law. The  model  is  forced  through  a  simple  temperature  distribution  and  a  Positive  Degree  Day  model which allows to apply a large range of different forcing scenarios. Of particular interest is the evolution of the distribution of the efficient and inefficient component of the subglacial drainage system and their different response to the distribution of melt during the year which directly impact the sliding regime at the base of the glacier.</p>



2020 ◽  
Author(s):  
yufang zhang ◽  
John Moore ◽  
Michael Wolovick ◽  
Rupert Gladstone ◽  
Thomas Zwinger ◽  
...  

<p><strong>Abstract:</strong> Very little is known about the subglacial hydrologic system under the Antarctic Ice Sheet due to the difficulty of directly observing the bottom of the ice sheet. Hydrology modeling is a powerful tool to simulate the spatial distribution of crucial hydrologic properties under the ice sheet. Here, we use the state-of-art two-dimensional Glacier Drainage System model (GlaDS) to simulate both distributed sheet flow and continuous channels under Pine Island Glacier (PIG), West Antarctica, one of the largest contributors to sea level rise in Antarctica.</p><p>We adopt an unstructured triangular mesh which enables channels to form along element edges. We drive the model with meltwater computed from an inversion and steady temperature simulation of PIG using a Stokes flow ice dynamic model. Our domain comprises the full PIG catchment. We aim to study the pattern and development of water pressure, hydraulic potential, water sheet thickness and discharge, as well as channel area and flux, which together describe the state of the basal system.</p><p>Our results for hydraulic potential correctly route water towards the grounding line, while we find near-zero effective pressure underneath the main trunk of PIG, consistent with the low basal drag and low driving stress there. This has implications for the representation of sliding in ice dynamic models: typical assumptions about hydrology connectivity to the ocean will overestimate effective pressure. When run forward in time, efficient channels evolve near the grounding line indicating an efficient drainage system where water fluxes are high in the downstream part of the PIG.</p><p>By applying GlaDS to a real marine ice sheet catchment we can better understand how basal hydrology modulates ice dynamics through basal sliding. We plan to compare our model predictions of effective pressure and drainage system with driving stress and inversions of basal drag. This will allow us to see the relationship between basal hydrology and basal sliding under PIG, and provide us better tools to predict the evolution of the region in view of future climate scenarios. Moving forward, we plan to couple the hydrology model with the ice dynamics model to make more accurate projections of sea level rise from PIG.</p><p>Key Words: West Antarctica, subglacial hydrology, drainage system, GlaDS, Elmer/Ice, Pine Island Glacier</p>



2003 ◽  
Vol 37 ◽  
pp. 159-165 ◽  
Author(s):  
Birgit Paschke ◽  
Manfred A. Lange

AbstractThe aim of this study is to derive basic ice dynamics for Nivlisen, a relatively small ice shelf in Dronning Maud Land, East Antarctica, and its drainage area. Therefore, the adaptation of an existing three-dimensional numerical flow model (Sandhäger, 2000) was undertaken, which had been applied previously to Ekstromisen and its drainage system. Compared to that region, Nivlisen and its drainage area represent a significantly more complicated geometrical situation. This has consequently large impacts on the flow regime, i.e. several modifications are necessary and reasonable. The diagnostic modelling is carried out in order to derive the current ice dynamics. The resulting ice-flow velocities seem to be too small compared to typical values for such glaciers. Therefore, the basal temperature at some gridpoints was set to pressure-melting point to obtain more realistic results. Furthermore, the use of a spatially varying parameter to describe basal sliding is advisable. Presenting the numerical results, the focus lies on the modelled ice-velocity field. The mass-balance quantities are calculated from the simulated velocity distribution and the underlying ice-geometry models derived from different datasets. The diagnostic results will serve as the basis for future prognostic modelling studies.



1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.



2010 ◽  
Vol 4 (3) ◽  
pp. 381-396 ◽  
Author(s):  
M. A. Werder ◽  
T. V. Schuler ◽  
M. Funk

Abstract. We first present the results of a series of tracer experiments conducted on an alpine glacier (Gornergletscher, Switzerland) over a diurnal discharge cycle. For these injections, a moulin was used into which an ice marginal lake was draining, providing a relatively constant discharge. The measured tracer transit speeds show two diurnal maxima and minima. These findings are qualitatively different to existing observations from two series of injections conducted at Unteraargletscher (Switzerland) using a moulin fed by supraglacial meltwater having a high diurnal variability, which displayed one diurnal maximum and minimum. We then develop and use a simple two-component model of the glacier drainage system, comprising a moulin and a channel element, to simulate the measured transit speeds for all three injection series. The model successfully reproduces all the observations and shows that the same underlying processes can produce the qualitatively different behaviour depending on the different moulin input discharge regimes. Using the model, we assess the relative importance of the different measurement quantities, show that frequent measurements of moulin input discharge are indispensable and propose an experiment design to monitor the development of the drainage system over several weeks.



2021 ◽  
Author(s):  
Paul Halas ◽  
Jeremie Mouginot ◽  
Basile de Fleurian ◽  
Petra Langebroek

<div> <p>Ice losses from the Greenland Ice Sheet have been increasing in the last two decades, leading to a larger contribution to the global sea level rise. Roughly 40% of the contribution comes from ice-sheet dynamics, mainly regulated by basal sliding. The sliding component of glaciers has been observed to be strongly related to surface melting, as water can eventually reach the bed and impact the subglacial water pressure, affecting the basal sliding.  </p> </div><div> <p>The link between ice velocities and surface melt on multi-annual time scale is still not totally understood even though it is of major importance with expected increasing surface melting. Several studies showed some correlation between an increase in surface melt and a slowdown in velocities, but there is no consensus on those trends. Moreover those investigations only presented results in a limited area over Southwest Greenland.  </p> </div><div> <p>Here we present the ice motion over many land-terminating glaciers on the Greenland Ice Sheet for the period 2000 - 2020. This type of glacier is ideal for studying processes at the interface between the bed and the ice since they are exempted from interactions with the sea while still being relevant for all glaciers since they share the same basal friction laws. The velocity data was obtained using optical Landsat 7 & 8 imagery and feature-tracking algorithm. We attached importance keeping the starting date of our image pairs similar, and avoided stacking pairs starting before and after melt seasons, resulting in multiple velocity products for each year.  </p> </div><div> <p>Our results show similar velocity trends for previously studied areas with a slowdown until 2012 followed by an acceleration. This trend however does not seem to be observed on the whole ice sheet and is probably specific to this region’s climate forcing. </p> </div><div> <p>Moreover comparison between ice velocities from different parts of Greenland allows us to observe the impact of different climatic trends on ice dynamics.</p> </div>



Sign in / Sign up

Export Citation Format

Share Document