scholarly journals Brief communication: The anomalous winter 2019 sea ice conditions in McMurdo Sound, Antarctica

2021 ◽  
Author(s):  
Greg H. Leonard ◽  
Kate E. Turner ◽  
Maren E. Richter ◽  
Maddy S. Whittaker ◽  
Inga J. Smith

Abstract. McMurdo Sound sea ice can generally be partitioned into two regimes: (1) a stable fast-ice cover, forming south of approximately 77.6° S around March/April, then breaking out the following January/February; and, (2) a more dynamic region north of 77.6° S that the McMurdo Sound and Ross Sea polynyas regularly impact. In 2019, a stable fast-ice cover formed unusually late due to repeated breakout events. We analyse the 2019 sea-ice conditions and relate them to southerly wind events using a Katabatic Wind Index (KWI). We find there is a strong correlation between breakout events and several unusually large KWI events.

2021 ◽  
Vol 15 (10) ◽  
pp. 4999-5006
Author(s):  
Greg H. Leonard ◽  
Kate E. Turner ◽  
Maren E. Richter ◽  
Maddy S. Whittaker ◽  
Inga J. Smith

Abstract. McMurdo Sound sea ice can generally be partitioned into two regimes: (1) a stable fast-ice cover, forming south of approximately 77.6∘ S around March–April and then breaking out the following January–February, and (2) a more dynamic region north of 77.6∘ S that the McMurdo Sound and Ross Sea polynyas regularly impact. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. We analyse the 2019 sea-ice conditions and relate them to a modified storm index (MSI), a proxy for southerly wind events. We find there is a strong correlation between the timing of break-out events and several unusually large MSI events.


2008 ◽  
Vol 20 (6) ◽  
pp. 593-604 ◽  
Author(s):  
J.-P. Remy ◽  
S. Becquevort ◽  
T.G. Haskell ◽  
J.-L. Tison

AbstractIce cores were sampled at four stations in McMurdo Sound (Ross Sea) between 1999 and 2003. At the beginning of year 2000, a very large iceberg (B-15) detached itself from the Ross Ice Shelf and stranded at the entrance of the Sound, preventing the usual oceanic circulation purging of the annual sea ice cover from this area. Ice textural studies showed that a second year sea ice cover was built-up at three out of the four stations: ice thickness increased to about 3 m. Repeated alternation of columnar and platelet ice appeared, and bulk salinity showed a strong decrease, principally in the upper part of the ice sheet, with associated brine volume decrease. Physical modification influenced the biology as well. By decreasing the light and space available for organisms in the sea ice cover, the stranding of B-15 has i) hampered autotrophic productivity, with chlorophyllaconcentration and algae biomass significantly lower for second year ice stations, and ii) affected trophic relationships such as the bacterial biomass/chlaconcentration correlation, or the autotrophic to heterotrophic ratio.


2020 ◽  
Vol 14 (10) ◽  
pp. 3329-3347 ◽  
Author(s):  
Lisa Thompson ◽  
Madison Smith ◽  
Jim Thomson ◽  
Sharon Stammerjohn ◽  
Steve Ackley ◽  
...  

Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface ocean observations of polynyas in winter, thereby impeding new insights into the evolution of these ice factories through the dark austral months. Here, we describe oceanic observations during multiple katabatic wind events during May 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularly exceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD) profiles revealed bulges of warm, salty water directly beneath the ocean surface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production.


2006 ◽  
Vol 18 (4) ◽  
pp. 583-594 ◽  
Author(s):  
K.G. Ryan ◽  
E.N. Hegseth ◽  
A. Martin ◽  
S.K. Davy ◽  
R. O'Toole ◽  
...  

Diverse microbial communities survive within the sea ice matrix and are integral to the energy base of the Southern Ocean. Here we describe initial findings of a four season survey (between 1999–2004) of community structure and biomass of microalgae within the sea ice and in the underlying water column at Cape Evans and Cape Hallett, in the Ross Sea, Antarctica as part of the Latitudinal Gradient Project. At Cape Evans, bottom-ice chlorophyll a levels ranged from 4.4 to 173 mg Chl a m−2. Dominant species were Nitzschia stellata, N. lecointei, and Entomoneis kjellmanii, while the proportion of Berkeleya adeliensis increased steadily during spring. Despite being obtained later in the season, the Cape Hallett data show considerably lower standing stocks of chlorophyll ranging from 0.11 to 36.8 mg Chl a m−2. This difference was attributed to a strong current, which may have ablated much of the bottom ice biomass and provided biomass to the water below. This loss of algae from the bottom of the ice may explain why the ice community contributed only 2% of the standing stock in the total water column. Dominant species at Cape Hallett were Nitzschia stellata, Fragilariopsis curta and Cylindrotheca closterium. The low biomass at Cape Hallett and the prevalence of smaller-celled diatoms in the bottom ice community indicate that the ice here is more typical of pack ice than fast ice. Further data will allow us to quantify and model the extent to which ice-driven dynamics control the structure and function of the sea ice ecosystem and to assess its resilience to changing sea ice conditions.


2021 ◽  
Author(s):  
◽  
Jane Margaret Chewings

<p>Large volumes of aeolian sand and dust are deflated from unconsolidated till deposits, and supraglacial debris surrounding McMurdo Sound, Antarctica. This material is transported offshore with windblown snow onto extensive winter-formed sea ice in the southwest Ross Sea, and is subsequently released into the water-column during summer sea ice breakup. Aeolian sediment samples were collected from a ~600 km² area of sea ice in western McMurdo Sound to determine the magnitude of deposition and identify sediment sources. A new 2-dimensional numerical aeolian sediment transport model (NaMASTE) tuned specifically for the McMurdo Sound area, was used to explore the ability of the local wind system to move sediment from source areas to sea ice and to determine the pattern and extent of aeolian sediment dispersal to the southwest Ross Sea. Debris deposits on the McMurdo Ice Shelf debris bands are the most dominant sediment source for the area. Unconsolidated deposits between Cape Bernacchi and Spike Cape, and the Taylor Valley mouth are significant secondary deposits. Mass accumulation rates varied between 0.15 g m⁻² y⁻¹ and 54.6 g m⁻² y⁻¹, equating to a background aeolian sediment accumulation rate, excluding extremely high values, of 1.14 ± 0.59 g m⁻² y⁻¹ for the McMurdo Sound coastal sea ice zone. This is 3–5 orders of magnitude more than global background dust fallout for the Ross Sea. Modal grain size is very-fine sand to coarse silt. Notably, much of this material is distributed in localised, high sand content plumes that are oriented downwind from source, with finer deposits found outside these zones. An average seafloor linear sedimentation rate of 0.2 cm ky⁻¹ is calculated for McMurdo Sound, which is minor compared to biogenic sedimentation for the region. This equates to ~0.7 Gg y⁻¹ aeolian sediment entering McMurdo Sound during sea ice melt. Application of NaMASTE successfully simulated the general aeolian sediment distribution pattern. Testing of model variables suggests that aeolian material is mainly transported during strong (>20 m s⁻¹) wind events. Modelling also suggests aeolian material from McMurdo Sound can be transported north to the Drygalski Ice Tongue, ~250 km from source, but only in very trace quantities.</p>


2018 ◽  
Vol 30 (2) ◽  
pp. 125-142 ◽  
Author(s):  
Stacy Kim ◽  
Ben Saenz ◽  
Jeff Scanniello ◽  
Kendra Daly ◽  
David Ainley

AbstractFast ice plays important physical and ecological roles: as a barrier to wind, waves and radiation, as both barrier and safe resting place for air-breathing animals, and as substrate for microbial communities. While sea ice has been monitored for decades using satellite imagery, high-resolution imagery sufficient to distinguish fast ice from mobile pack ice extends only back to c. 2000. Fast ice trends may differ from previously identified changes in regional sea ice distributions. To investigate effects of climate and human activities on fast ice dynamics in McMurdo Sound, Ross Sea, the sea and fast ice seasonal events (1978–2015), ice thicknesses and temperatures (1986–2014), wind velocities (1973–2015) and dates that an icebreaker annually opens a channel to McMurdo Station (1956–2015) are reported. A significant relationship exists between sea ice concentration and fast ice extent in the Sound. While fast/sea ice retreat dates have not changed, fast/sea ice reaches a minimum later and begins to advance earlier, in partial agreement with changes in Ross Sea regional pack ice dynamics. Fast ice minimum extent within McMurdo Sound is significantly correlated with icebreaker arrival date as well as wind velocity. The potential impacts of changes in fast ice climatology on the local marine ecosystem are discussed.


2001 ◽  
Vol 33 ◽  
pp. 474-480 ◽  
Author(s):  
Niels Reeh ◽  
Henrik Højmark Thomsen ◽  
Anthony K. Higgins ◽  
Anker Weidick

AbstractThe interaction between sea ice and glaciers has been studied for the floating tongue of Nioghalvfjerdsfjorden glacier, northeast Greenland (79°30’N, 22° W). Information from glacial geological studies, expedition reports, aerial photographs and satellite imagery is used to document the glacier front position and fast-ice conditions on millennial to decadal time-scales. The studies indicate that the stability of the floating glacier margin is dependent on the presence of a protecting fast-ice cover in front of the glacier. In periods with a permanent fast-ice cover, no calving occurs, but after fast-ice break-up the glacier responds with a large calving activity, whereby several years of accumulated glacier-ice flux suddenly breaks away. Climate-induced changes of sea-ice conditions in the Arctic Ocean with seasonal break-up of the near-shore fast ice could lead to disintegration of the floating glaciers. The present dominant mass loss by bottom melting would then to a large extent be taken over by grounding-line calving of icebergs. The local influx of fresh water from the north Greenland glaciers to the sea would be reduced and the local iceberg production would increase.


2021 ◽  
Author(s):  
◽  
Jane Margaret Chewings

<p>Large volumes of aeolian sand and dust are deflated from unconsolidated till deposits, and supraglacial debris surrounding McMurdo Sound, Antarctica. This material is transported offshore with windblown snow onto extensive winter-formed sea ice in the southwest Ross Sea, and is subsequently released into the water-column during summer sea ice breakup. Aeolian sediment samples were collected from a ~600 km² area of sea ice in western McMurdo Sound to determine the magnitude of deposition and identify sediment sources. A new 2-dimensional numerical aeolian sediment transport model (NaMASTE) tuned specifically for the McMurdo Sound area, was used to explore the ability of the local wind system to move sediment from source areas to sea ice and to determine the pattern and extent of aeolian sediment dispersal to the southwest Ross Sea. Debris deposits on the McMurdo Ice Shelf debris bands are the most dominant sediment source for the area. Unconsolidated deposits between Cape Bernacchi and Spike Cape, and the Taylor Valley mouth are significant secondary deposits. Mass accumulation rates varied between 0.15 g m⁻² y⁻¹ and 54.6 g m⁻² y⁻¹, equating to a background aeolian sediment accumulation rate, excluding extremely high values, of 1.14 ± 0.59 g m⁻² y⁻¹ for the McMurdo Sound coastal sea ice zone. This is 3–5 orders of magnitude more than global background dust fallout for the Ross Sea. Modal grain size is very-fine sand to coarse silt. Notably, much of this material is distributed in localised, high sand content plumes that are oriented downwind from source, with finer deposits found outside these zones. An average seafloor linear sedimentation rate of 0.2 cm ky⁻¹ is calculated for McMurdo Sound, which is minor compared to biogenic sedimentation for the region. This equates to ~0.7 Gg y⁻¹ aeolian sediment entering McMurdo Sound during sea ice melt. Application of NaMASTE successfully simulated the general aeolian sediment distribution pattern. Testing of model variables suggests that aeolian material is mainly transported during strong (>20 m s⁻¹) wind events. Modelling also suggests aeolian material from McMurdo Sound can be transported north to the Drygalski Ice Tongue, ~250 km from source, but only in very trace quantities.</p>


2015 ◽  
Vol 9 (4) ◽  
pp. 4043-4066
Author(s):  
S. Muckenhuber ◽  
F. Nilsen ◽  
A. Korosov ◽  
S. Sandven

Abstract. A satellite database including 16 555 satellite images and ice charts displaying the area of Isfjorden, Hornsund and the Svalbard region has been established with focus on the time period 2000–2014. 3319 manual interpretations of sea ice conditions have been conducted, resulting in two time series dividing the area of Isfjorden and Hornsund into "Fast ice", "Drift ice" and open "Water". The maximum fast ice coverage of Isfjorden is > 40 % in the periods 2000–2005 and 2009–2011 and stays < 30 % in 2006–2008 and 2012–2014. Fast ice cover in Hornsund reaches > 40 % in all considered years, except for 2012 and 2014, where the maximum stays < 20 %. The mean seasonal cycles of fast ice in Isfjorden and Hornsund show monthly averaged values of less than 1 % between July and November and maxima in March (Isfjorden, 35.7 %) and April (Hornsund, 42.1 %) respectively. A significant reduction of the monthly averaged fast ice coverage is found when comparing the time periods 2000–2005 and 2006–2014. The seasonal maximum decreases from 57.5 to 23.2 % in Isfjorden and from 52.6 to 35.2 % in Hornsund. A new concept, called "days of fast ice coverage" (DFI), is introduced for quantification of the interannual variation of fast ice cover, allowing for comparison between different fjords and winter seasons. Considering the time period from 1 March until end of sea ice season, the mean DFI values for 2000–2014 are 33.1 ± 18.2 DFI (Isfjorden) and 42.9 ± 18.2 DFI (Hornsund). A distinct shift to lower DFI values is observed in 2006. Calculating a mean before and after 2006 yields a decrease from 50 to 22 DFI for Isfjorden and from 56 to 34 DFI for Hornsund.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


Sign in / Sign up

Export Citation Format

Share Document