scholarly journals Winter observations of CO<sub>2</sub> exchange between sea ice and the atmosphere in a coastal fjord environment

2015 ◽  
Vol 9 (4) ◽  
pp. 1701-1713 ◽  
Author(s):  
J. Sievers ◽  
L. L. Sørensen ◽  
T. Papakyriakou ◽  
B. Else ◽  
M. K. Sejr ◽  
...  

Abstract. Eddy covariance observations of CO2 fluxes were conducted during March–April 2012 in a temporally sequential order for 8, 4 and 30 days, respectively, at three locations on fast sea ice and on newly formed polynya ice in a coastal fjord environment in northeast Greenland. CO2 fluxes at the sites characterized by fast sea ice (ICEI and DNB) were found to increasingly reflect periods of strong outgassing in accordance with the progression of springtime warming and the occurrence of strong wind events: FCO2ICE1 = 1.73 ± 5 mmol m−2 day−1 and FCO2DNB = 8.64 ± 39.64 mmol m−2 day−1, while CO2 fluxes at the polynya site (POLYI) were found to generally reflect uptake FCO2POLY1 = −9.97 ± 19.8 mmol m−2 day−1. Values given are the mean and standard deviation, and negative/positive values indicate uptake/outgassing, respectively. A diurnal correlation analysis supports a significant connection between site energetics and CO2 fluxes linked to a number of possible thermally driven processes, which are thought to change the pCO2 gradient at the snow–ice interface. The relative influence of these processes on atmospheric exchanges likely depends on the thickness of the ice. Specifically, the study indicates a predominant influence of brine volume expansion/contraction, brine dissolution/concentration and calcium carbonate formation/dissolution at sites characterized by a thick sea-ice cover, such that surface warming leads to an uptake of CO2 and vice versa, while convective overturning within the sea-ice brines dominate at sites characterized by comparatively thin sea-ice cover, such that nighttime surface cooling leads to an uptake of CO2 to the extent permitted by simultaneous formation of superimposed ice in the lower snow column.

1995 ◽  
Vol 7 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Ute Adolphs ◽  
Gerd Wendler

Infrared satellite images of the coastal area off Adélie Land were examined together with two wind data sets, one from the manned French station, Dumont d'Urville, the other one from an Automatic Weather Station (AWS) during the 1986 austral winter. A correlation between the development of open water areas (polynyas) and the appearance of extremely strong offshore winds can be drawn. The wind direction tended to be more perpendicular to the coastline during these extreme ‘events’, suggesting a katabatic origin of the increase in wind strength. In the study area the influence of the katabatic wind on the sea ice extends 20–100 km offshore. Sea ice motion further off the coast seems to be more dominated by synoptic scale weather systems. Broader scale atmospheric influences may create large polynya structures which influence the development of coastal winds, as the temperature contrast between open water and the cold continent generates its own circulation. Strong wind events can have a weakening effect on the coastal sea ice which can lead to a much more sensitive reaction of the sea ice in response to following anomalous wind events.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


2021 ◽  
Author(s):  
Xiaoqiao Wang ◽  
Zhaoru Zhang ◽  
Xuezhu Wang ◽  
Timo Vihma ◽  
Meng Zhou ◽  
...  

AbstractStrong offshore wind events (SOWEs) occur frequently near the Antarctic coast during austral winter. These wind events are typically associated with passage of synoptic- or meso-scale cyclones, which interact with the katabatic wind field and affect sea ice and oceanic processes in coastal polynyas. Based on numerical simulations from the coupled Finite Element Sea-ice Ocean Model (FESOM) driven by the CORE-II forcing, two coastal polynyas along the East Antarctica coast––the Prydz Bay Polynya and the Shackleton Polynya are selected to examine the response of sea ice and oceanic properties to SOWEs. In these polynyas, the southern or western flanks of cyclones play a crucial role in increasing the offshore winds depending on the local topography. Case studies for both polynyas show that during SOWEs, when the wind speed is 2–3 times higher than normal values, the offshore component of sea ice velocity can increase by 3–4 times. Sea ice concentration can decrease by 20–40%, and sea ice production can increase up to two to four folds. SOWEs increase surface salinity variability and mixed layer depth, and such effects may persist for 5–10 days. Formation of high salinity shelf water (HSSW) is detected in the coastal regions from surface to 800 m after 10–15 days of the SOWEs, while the HSSW features in deep layers exhibit weak response on the synoptic time scale. HSSW formation averaged over winter is notably greater in years with longer duration of SOWEs.


1984 ◽  
Vol 30 (105) ◽  
pp. 230-234
Author(s):  
Thomas O’D ◽  
S.J. Hanley

AbstractDuring December 1973 the initial smooth ice cover on the Chukchi Sea near Barrow, Alaska, broke away from the shore during a period of strong wind and was replaced by a cover of broken, rafted ice which remained for the rest of the winter. Cores pulled from this cover were examined visually, and the salinity and density of sections of the cores were measured. Temperatures at several depths in the ice were recorded continuously, and these are presented near the date when the temperature gradient changed sign. Despite large deviations probably due to the irregularity of the ice cover, thickness and salinity followed the patterns seen by other observers.


2020 ◽  
pp. 1-47
Author(s):  
Edward W. Doddridge ◽  
John Marshall ◽  
Hajoon Song ◽  
Jean-Michel Campin ◽  
Maxwell Kelley

AbstractThe observational record shows a substantial 40-year upward trend in summertime westerly winds over the Southern Ocean, as characterised by the Southern Annular Mode (SAM) index. Enhanced summertime westerly winds have been linked to cold summertime sea surface temperature (SST) anomalies. Previous studies have suggested that Ekman transport or upwelling is responsible for this seasonal cooling. Here, another process is presented in which enhanced vertical mixing, driven by summertime wind anomalies, moves heat downwards, cooling the sea surface and simultaneously warming the subsurface waters. The anomalously cold SSTs draw heat from the atmosphere into the ocean, leading to increased depth-integrated ocean heat content. The subsurface heat is returned to the surface mixed layer during the autumn and winter as the mixed layer deepens, leading to anomalously warm SSTs and potentially reducing sea ice cover. Observational analyses and numerical experiments support our proposed mechanism, showing that enhanced vertical mixing produces subsurface warming and cools the surface mixed layer. Nevertheless, the dominant driver of surface cooling remains uncertain; the relative importance of advective and mixing contributions to the surface cooling is model dependent. Modeling results suggest that sea ice volume is more sensitive to summertime winds than sea ice extent, implying that enhanced summertime westerly winds may lead to thinner sea ice in the following winter, if not lesser ice extent. Thus, strong summertime winds could precondition the sea ice cover for a rapid retreat in the following melt season.


2016 ◽  
Author(s):  
Y. Xia ◽  
Y. Hu ◽  
Y. Huang

Abstract. We investigate the climatic impact of stratospheric ozone recovery (SOR) with a focus on the surface temperature change in atmosphere-slab-ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea-ice, it may result in surface cooling (−0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.


2017 ◽  
Vol 11 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H. J. Coggins ◽  
Wolfgang Rack

Abstract. We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.


2019 ◽  
Vol 92 (2) ◽  
pp. 430-449 ◽  
Author(s):  
Elena Ivanova ◽  
Ivar Murdmaa ◽  
Anne de Vernal ◽  
Bjørg Risebrobakken ◽  
Alexander Peyve ◽  
...  

AbstractThe Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ18O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.


1984 ◽  
Vol 30 (105) ◽  
pp. 230-234
Author(s):  
Thomas O’D ◽  
S.J. Hanley

AbstractDuring December 1973 the initial smooth ice cover on the Chukchi Sea near Barrow, Alaska, broke away from the shore during a period of strong wind and was replaced by a cover of broken, rafted ice which remained for the rest of the winter. Cores pulled from this cover were examined visually, and the salinity and density of sections of the cores were measured. Temperatures at several depths in the ice were recorded continuously, and these are presented near the date when the temperature gradient changed sign. Despite large deviations probably due to the irregularity of the ice cover, thickness and salinity followed the patterns seen by other observers.


Sign in / Sign up

Export Citation Format

Share Document