scholarly journals INCREASED LIFE EXPECTANCY BASED ON PHYSICAL FORMULAS

Globus ◽  
2021 ◽  
Vol 7 (1(58)) ◽  
pp. 4-6
Author(s):  
E.G. Yakubovsky

Life expectancy is due to the frequency of processes occurring in the body. The lower the frequency, the longer the lifespan. The frequency is influenced by the fraction of vacuum particles in a free, unbound state. Elementary particles are connected, grouped particles of vacuum. But in a free state, a large proportion of them affect the frequency of oscillations, increasing it, therefore, reducing the lifetime. The connection between a living organism and an inanimate body has been drawn. Dislocations are analogous to vacuum particles. Their low density and low fraction of vacuum particles describe the theoretical ultimate strength and lifetime. The increase in density and the formation of crystalline elementary particles cause the average lifetime and average strength, orders of magnitude smaller than the theoretical one. A further increase in the dislocation density causes cracks and ruptures, and partly chaotic formation — tumors, partly crystalline. Chaos and order are described by a complex unified field that causes tumors. This unified field is described by the hydrodynamic, acoustic, complex Reynolds number with a small imaginary part. But the formation of a small imaginary Reynolds number is an inevitable process with increasing time, as is the formation of tumors. But how to deal with them. It is necessary for the tumors to pass from a partially chaotic state to a crystalline one, forming elementary particles. This requires a periodic unified field with a wavelength equal to a constant period, which is formed by vacuum particles in elementary, crystalline particles. In addition, an imaginary magnetic field is required, which has a sign opposite to the Reynolds number. Just irradiating the tumor will not help, you need a certain wavelength and a certain sign of the imaginary magnetic

2019 ◽  
Vol 20 (4) ◽  
pp. 267-275
Author(s):  
Yury N. Razoumny ◽  
Sergei A. Kupreev

The controlled motion of a body in a central gravitational field without mass flow is considered. The possibility of moving the body in the radial direction from the center of attraction due to changes in the kinetic moment relative to the center of mass of the body is shown. A scheme for moving the body using a system of flywheels located in the same plane in near-circular orbits with different heights is proposed. The use of the spin of elementary particles is considered as flywheels. It is proved that using the spin of elementary particles with a Compton wavelength exceeding the distance to the attracting center is energetically more profitable than using the momentum of these particles to move the body. The calculation of motion using hypothetical particles (gravitons) is presented. A hypothesis has been put forward about the radiation of bodies during accelerated motion, which finds indirect confirmation in stellar dynamics and in an experiment with the fall of two bodies in a vacuum. The results can be used in experiments to search for elementary particles with low energy, explain cosmic phenomena and to develop transport objects on new physical principles.


Author(s):  
Frank T. Smith ◽  
Edward R. Johnson

A body of finite size is moving freely inside, and interacting with, a channel flow. The description of this unsteady interaction for a comparatively dense thin body moving slowly relative to flow at medium-to-high Reynolds number shows that an inviscid core problem with vorticity determines much, but not all, of the dominant response. It is found that the lift induced on a body of length comparable to the channel width leads to differences in flow direction upstream and downstream on the body scale which are smoothed out axially over a longer viscous length scale; the latter directly affects the change in flow directions. The change is such that in any symmetric incident flow the ratio of slopes is found to be cos ⁡ ( π / 7 ) , i.e. approximately 0.900969, independently of Reynolds number, wall shear stresses and velocity profile. The two axial scales determine the evolution of the body and the flow, always yielding instability. This unusual evolution and linear or nonlinear instability mechanism arise outside the conventional range of flow instability and are influenced substantially by the lateral positioning, length and axial velocity of the body.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


1977 ◽  
Vol 79 (1) ◽  
pp. 127-156 ◽  
Author(s):  
Hans J. Lugt ◽  
Samuel Ohring

Numerical solutions are presented for laminar incompressible fluid flow past a rotating thin elliptic cylinder either in a medium at rest at infinity or in a parallel stream. The transient period from the abrupt start of the body to some later time (at which the flow may be steady or periodic) is studied by means of streamlines and equi-vorticity lines and by means of drag, lift and moment coefficients. For purely rotating cylinders oscillatory behaviour from a certain Reynolds number on is observed and explained. Rotating bodies in a parallel stream are studied for two cases: (i) when the vortex developing at the retreating edge of the thin ellipse is in front of the edge and (ii) when it is behind the edge.


Author(s):  
Singh Binod Kumar ◽  
Bharkher D.L

The problem of ageing is experienced by all the countries. According to World Health statistics the life expectancy of Nepalese people has risen from 58.91 years to 67.86 years (1996 to 2015). Ageing is emerging issue in Nepal as well as global. Its tempo is expected to be unexpectedly fast as mortality continues to decline and life expectancy continues to increase. Ayurveda the science of life has observed ageing as a Jara avastha, which is a later phase of life, it is natural, inevitable phenomenon, in which maximum decline of bodily elements that may become as major cause of disability and functional dependency requiring services that affect many sectors of economy, health, security, income, housing, transportation etc. Jara chikitsa has been mentioned as one independent Anga in Ashtanga Ayurveda where Rasayana therapy is capable to impede the ageing process and to delay the degenerative process in the body. In this study we measured the effectiveness of Ashwagandha rasayana and Matra basti and compared with the Ashwagandha Rasayan only in Jara avastha. A total of thirty elderly patients were selected and divided in two groups A and B, given them either Ashwagandha Rasayana with Matra basti or Ashwagandha rasayana in prescribed doses for 45 days. Changes in the subjective complaints, objective parameters of the patients and appearance of adverse events were also evaluated. Both the groups provided better results on the chief complaints But, comparison in between both the groups is insignificant, that may be due to small sample size.


1994 ◽  
Vol 269 ◽  
pp. 79-106 ◽  
Author(s):  
T. C. Fu ◽  
A. Shekarriz ◽  
J. Katz ◽  
T. T. Huang

Particle displacement velocimetry is used to measure the velocity and vorticity distributions around an inclined 6: 1 prolate spheroid. The objective is to determine the effects of boundary-layer tripping, incidence angle, and Reynolds number on the flow structure. The vorticity distributions are also used for computing the lateral forces and rolling moments that occur when the flow is asymmetric. The computed forces agree with results of direct measurements. It is shown that when the flow is not tripped, separation causes the formation of a pair of vortex sheets. The size of these sheets increases with increasing incidence angle and axial location. Their orientation and internal vorticity distribution also depend on incidence. Rollup into distinct vortices occurs in some cases, and the primary vortex contains between 20 % and 50 % of the overall circulation. The entire flow is unsteady and there are considerable variations in the instantaneous vorticity distributions. The remainder of the lee side, excluding these vortex sheets, remains almost vorticity free, providing clear evidence that the flow can be characterized as open separation. Boundary-layer tripping causes earlier separation on part of the model, brings the primary vortex closer to the body, and spreads the vorticity over a larger region. The increased variability in the vorticity distribution causes considerable force fluctuations, but the mean loads remain unchanged. Trends with increasing Reynolds number are conflicting, probably because of boundary-layer transition. The separation point moves towards the leeward meridian and the normal force decreases when the Reynolds number is increased from 0.42 × 106 to 1.3 × 106. Further increase in the Reynolds number to 2.1 × 106 and tripping cause an increase in forces and earlier separation.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


1988 ◽  
Vol 135 (1) ◽  
pp. 253-264 ◽  
Author(s):  
C. J. PENNYCUICK ◽  
HOLLIDAY H. OBRECHT ◽  
MARK R. FULLER

To whom reprint requests should be addressed. Measurements of the body frontal area of some large living waterfowl (Anatidae) and raptors (Falconiformes) were found to vary with the two-thirds power of the body mass, with no distinction between the two groups. Wind tunnel measurements on frozen bodies gave drag coefficients ranging from 0.25 to 0.39, in the Reynolds number range 145 000 to 462 000. Combining these observations with those of Prior (1984), which extended to lower Reynolds numbers, a practical rule is proposed for choosing a value of the body drag coefficient for use in performance estimates.


Sign in / Sign up

Export Citation Format

Share Document