Fabrication of Precise Micro-fluidic Devices using a Low-cost and Simple Contact-exposure Tool for Lithography

2020 ◽  
pp. 2050028
Author(s):  
E CHENG ◽  
SUZHOU TANG ◽  
LINGPENG LIU ◽  
HELIN ZOU ◽  
ZHENGYAN ZHANG

Nano-fluidic devices have great potential in the applications of biology, chemistry, and medicine. However, their applications have been hampered by their expensive or complicated fabrication methods. We present a new and simple approach to fabricate low-cost two-dimensional (2D) nano-mold based on ultraviolet (UV) lithography and wet etching. The influence of UV lithography parameters on the width dimension of AZ5214 photoresist was investigated. With the optimized parameters of UV lithography, the width dimension of photoresist patterns had sharply decreased from microscale to nano-scale. At the same time, the influences of etching time on the over-etching amount of SiO2 film and nano-mold depth were also analyzed for further reducing the width of nano-mold. In addition, the effect of photoresist mesas deformation on the nano-mold fabrication was also studied for improving the quality of nano-mold. By the proposed method, trapezoid cross-sectional 2D nano-mold with different dimensions can be obtained for supporting varied applications. The minimum nano-mold arrays we fabricated are the ones with the dimensions of 115[Formula: see text]nm in top edge, 284[Formula: see text]nm in bottom edge, and 136[Formula: see text]nm in depth. This method provides a low-cost way to fabricate high-quality and high-throughput 2D nano-mold.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000557-000578
Author(s):  
Mathias Nowottnick ◽  
Lienhard Pagel ◽  
Stefan Gassmann

Printed circuit boards (PCB) are widely used in electronics. They have the wiring and holding task for electronic devices. With the adding of more and more functionality to miniaturized devices the PCBs have to include more and more functionality. However, the usage of PCBs in fluidic applications is rare. Adding a fluidic functionality to a PCB will create intelligent fluidic systems at low cost. At the University of Rostock a special technology for creating fluidic systems in PCBs is developed. Low-Flow micro systems as well as High-Flow systems are feasible. The main advantage using PCBs is to create compact devices at low cost. In this paper an overview is given over the devices made at the University of Rostock. This description include low flow devices like a thermopneumatical driven pump, a bimetal valve, a pressure sensor with force compensation, a bubble detector and static mixers. As well as a high flow device, the insufflator. The insufflator is a medical device where a flow rate of up to 45l/min has to be realized. This is a very good example for the high flow fluidic PCB technology where normal multi layer PCBs are used to hold the channels inside the PCB and connect pneumatic components electrically and pneumatically on the same substrate. A short introduction to both technologies is given and the function of the devices is explained.


2020 ◽  
Author(s):  
Mark Crawford

AbstractA positive pressure protective hood system was purposefully constructed only from materials commonly found worldwide, including bendable aluminum mesh, elastic head straps, velcro tape, a plastic sheet, a furnace filter and two computer central processing unit (CPU) cooling fans. The practical advantages of this system are that the materials are readily available in the inventories of most electronics and hardware outlets, ease of assembly (particularly if choosing to employ 3D printing for the fan enclosure and/or making several units at once with a defined workflow), and high probability of the materials being available in current or prospective personal protective equipment (PPE)-deplete regions. An experiment with identical fire detectors showed adequate inner isolation of the hood prototype from paper combustion particulates, which have a size range slightly smaller than putative coronavirus aerosols, for at least 90 seconds. The theoretical advantages of this system include significant reduction in healthcare provider exposure to coronavirus-containing respiratory fomites, respiratory droplets and aerosols (vs. traditional static masks and shields) during high risk procedures such as endotracheal intubation or routine care of an upright and coughing patient. Additionally, the assembly eliminates contact exposure to coronavirus fomites due to whole-head coverage from a hood system.


2017 ◽  
Vol 31 (28) ◽  
pp. 1750253
Author(s):  
Yu Kou ◽  
Aixia Sang ◽  
Xin Li ◽  
Xudi Wang

Polymer-based micro/nano fluidic devices are becoming increasingly important to biological applications and fluidic control. In this paper, we propose a self-enclosure method for the fabrication of large-area nanochannels without external force by using a capillary-pressure balance mechanism. The melt polymer coated on the nanogrooves fills into the trenches inevitably and the air in the trenches is not excluded but compressed, which leads to an equilibrium state between pressure of the trapped air and capillary force of melt polymer eventually, resulting in the channels’ formation. A pressure balance model was proposed to elucidate the unique self-sealing phenomenon and the criteria for the design and construction of sealed channels was discussed. According to the bonding mechanism investigated using the volume of fluid (VOF) simulation and experiments, we can control the dimension of sealed channels by varying the baking condition. This fabrication technique has great potential for low-cost and mass production of polymeric-based micro/nano fluidic devices.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Sign in / Sign up

Export Citation Format

Share Document