scholarly journals A BINARY CHEMICAL REACTION ON UNSTEADY FREE CONVECTIVE BOUNDARY LAYER HEAT AND MASS TRANSFER FLOW WITH ARRHENIUS ACTIVATION ENERGY AND HEAT GENERATION/ABSORPTION

2014 ◽  
Vol 44 (1) ◽  
pp. 97-104
Author(s):  
KH. A. MALEQUE

We investigate a local similarity solution of an unsteady natural convection heat and mass transfer boundary layer incompressible fluid flow past a moving vertical porous plate in the presence of the heat absorption and generation. The effects of chemical reaction rate which is function of temperature and Arrhenius activation energy on the velocity, temperature and concentration are also studied in this paper. The governing partial differential equations are reduced to ordinary differential equations by introducing local similarity transformation (Maleque, 2010a). Numerical solutions to the reduced non-linear similarity equations are then obtained by adopting Runge-Kutta and shooting methods using the Nachtsheim- Swigert iteration technique. The results of the numerical solution are then presented graphically in the form of velocity, temperature and concentration profiles. The corresponding skin friction coefficient, the Nusselt number and the Sherwood number are also calculated and displayed in table showing the effects of various parameters on them.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kh. Abdul Maleque

We study an unsteady MHD free convection heat and mass transfer boundary layer incompressible fluid flow past a vertical porous plate in the presence of viscous dissipation, heat generation/absorption, chemical reaction, and Arrhenius activation energy. The plate is moving with uniform velocity. The chemical reaction rate in the function of temperature is also considered. The governing partial differential equations are reduced to ordinary differential equations by introducing local similarity transformation (Maleque (2010)) and then are solved numerically by shooting method using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are then presented graphically as well as the tabular form for difference values of the various parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kh. Abdul Maleque

A local similarity solution of unsteady MHD natural convection heat and mass transfer boundary layer flow past a flat porous plate within the presence of thermal radiation is investigated. The effects of exothermic and endothermic chemical reactions with Arrhenius activation energy on the velocity, temperature, and concentration are also studied in this paper. The governing partial differential equations are reduced to ordinary differential equations by introducing locally similarity transformation (Maleque (2010)). Numerical solutions to the reduced nonlinear similarity equations are then obtained by adopting Runge-Kutta and shooting methods using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are obtained for both steady and unsteady cases then presented graphically in the form of velocity, temperature, and concentration profiles. Comparison has been made for steady flow () and shows excellent agreement with Bestman (1990), hence encouragement for the use of the present computations.


2020 ◽  
Vol 25 (3) ◽  
pp. 86-102
Author(s):  
A. Sandhya ◽  
G.V. Ramana Reddy ◽  
G.V.S.R. Deekshitulu

AbstractThe impact of heat and mass transfer effects on an MHD flow past an inclined porous plate in the presence of a chemical reaction is investigated in this study. An effort has been made to explain the Soret effect and the influence of an angle of inclination on the flow field, in the presence of the heat source, chemical reaction and thermal radiation. The momentum, energy and concentration equations are derived as coupled second order partial differential equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless partial differential equations can be solved by using a closed analytical method. Numerical results for pertaining parameters, such as the Soret number (Sr), Grashof number (Gr) for heat and mass transfer, the Schmidt number (Sc), Prandtl number (Pr), chemical reaction parameter (Kr), permeability parameter (K), magnetic parameter (M), skin friction (τ), Nusselt number (Nu) and Sherwood number (Sh) on the velocity, temperature and concentration profiles are presented graphically and discussed qualitatively.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Tesfaye Kebede ◽  
Eshetu Haile ◽  
Gurju Awgichew ◽  
Tadesse Walelign

In this paper, analytic approximation to the heat and mass transfer characteristics of a two-dimensional time-dependent flow of Williamson nanofluids over a permeable stretching sheet embedded in a porous medium has been presented by considering the effects of magnetic field, thermal radiation, and chemical reaction. The governing partial differential equations along with the boundary conditions were reduced to dimensionless forms by using suitable similarity transformation. The resulting system of ordinary differential equations with the corresponding boundary conditions was solved via the homotopy analysis method. The results of the study show that velocity, temperature, and concentration boundary layer thicknesses generally decrease as we move away from the surface of the stretching sheet and the Williamson parameter was found to retard the velocity but it enhances the temperature and concentration profiles near the surface. It was also found that increasing magnetic field strength, thermal radiation, or rate of chemical reaction speeds up the mass transfer but slows down the heat transfer rates in the boundary layer. The results of this study were compared with some previously published works under some restrictions, and they are found in excellent agreement.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
P. Sudarsana Reddy ◽  
P. Sreedevi

PurposeSteady-state mixed convection boundary layer flow, heat and mass transfer characteristics of Buongiorno's model nanofluid over an inclined porous vertical plate with thermal radiation and chemical reaction are presented in this analysis.Design/methodology/approachThe governing nonlinear partial differential equations represent the flow model that can be converted into system of nonlinear ordinary differential equations using the similarity variables and are solved numerically using finite element method.FindingsThe rates of nondimensional temperature and concentration are both decelerate with the higher values of thermophoresis parameter (Nt).Originality/valueThe work carried out in this paper is original.


2021 ◽  
Vol 10 (4) ◽  
pp. 491-505
Author(s):  
Gopinath Mandal ◽  
Dulal Pal

The purpose of this article is to analyze the entropy generation and heat and mass transfer of carbon nano-tubes (CNTs) nanofluid by considering the applied magnetic field under the influence of thermal radiation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy over a linearly stretching cylinder. Convective boundary conditions on heat and mass transfer are considered. An isothermal model of homogeneous-heterogeneous reactions is used to regulate the solute concentration profile. It is assumed that the water-based nanofluid is composed of single and multi-walled carbon nanotubes. Employing a suitable set of similarity transformations, the system of partial differential equations is transformed into the system of nonlinear ordinary differential equations before being solved numerically. Through the implementation of the second law of thermodynamics, the total entropy generation is calculated. In addition, entropy generation for fluid friction, mass transfer, and heat transfer is discussed. This study is specially investigated for the impact of the chemical reaction, and activation energy with entropy generation subject to distinct flow parameters. It is found that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with higher radiation parameters and thermal Biot number. Entropy and Bejan number are found to be an increasing function of solid volume fraction, magnetic field, and curvature parameters. Binary chemical reaction and activation energy on concentration profile have opposite effects.


Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


Author(s):  
O.K. Koriko ◽  
A.J. Omowaye ◽  
Isaac Lare Animasaun ◽  
Idris O. Babatunde

The problem of unsteady non – Newtonian flow past a vertical porous surface in the presence of thermal radiation is investigated. Using the theory of boundary layer analysis, the flow of micropolar fluid in the presence of exothermic and endothermic kind of chemical reaction is considered. It is assumed that the relationship between the flow rate and the pressure drop as the fluid flows over a porous medium is non – linear. Using local similarity transformation, the governing partial differential equations of the physical model are reduced to ordinary differential equations. The corresponding boundary value problem is solved numerically using shooting method along with Runge-Kutta Gill method together with quadratic interpolation. It is found that increase in micro-rotation parameter increases the velocity while the micro- rotation decreases across the flow region. Maximum micro-rotation of tiny particles is guaranteed at higher values of suction parameter. Local heat transfer rate decreases with an increase in exothermic /endothermic parameter.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
R. Nandkeolyar ◽  
M. Das ◽  
P. Sibanda

Unsteady hydromagnetic free convective flow of a viscous, incompressible, electrically conducting, and heat radiating fluid past a flat plate with ramped wall temperature and suction/blowing is studied. The governing equations are first subjected to Laplace transformation and then inverted numerically usingINVLAProutine of Matlab. The numerical solutions of the fluid properties are presented graphically while the skin friction and heat and mass transfer coefficients are presented in tabular form. The results are verified by a careful comparison with results in the literature for certain parameter values.


Sign in / Sign up

Export Citation Format

Share Document