scholarly journals Bioenergy Power Generation Improved Through Biomass Co-Firing

Author(s):  
Cantika Setya Permatasari Setya ◽  
Johan Fahrizki ◽  
Nugroho Adi Sasongko

Generally, power plants have an environmental negative impact, due to emissions released from the power plant process. The Coal-fired power plant is the most dominant in the world. This is due to the relatively cheap price of coal and high calories produced. But on the other hand emissions generated by coal-fired power plants are quite large compared to other types of power plants, while all countries are working to reduce global warming, one of which is by reducing CO2 emissions. Utilization Renewable Energy is one of the solutions in efforts to reduce the use of fossil energy so that there is a decrease in CO2. Biomass is renewable energy which is currently widely used as fuel for electricity generation, Biomass fuel can be used 100% for a plant called PLTBm and can also be a coal-fired power plant with a certain percentage mix. Therefore, an analysis using the Life Cycle Assessment (LCA) method is used to determine differences in emissions produced between coal-fired power plants compared to the Biomass co-firing system. The result is a PLTU with a Biomass co-firing system produces lower emissions than a 100% coal-fired power plant.

Author(s):  
N.Subhashini Et.al

Renewable Energy has become an inevitable one in the world of power sector. Especially country like India (the second largest populated) powering the entire nation is not an easy thing. Typically we depend upon conventional energy sources which is to be dissipate at any point of time. Therefore now we are returning back to the pavilion, started using non conventional energy sources like our ancestors. Unlike conventional sources, the nonconventional sources are profuse in nature. These sources will be even more effective when coordination comes into picture. Mostly coordination will be done with wind and solar predominantly. In this paper, we are to reveal about the hidden treasure, the pumped storage power plant (PSP) its advantages and disadvantages.


DOI: 10.1002/chemv.202100049 Author: ChemistryViews Published Date: 31 Mai 2021 Copyright: Wiley-VCH GmbH thumbnail image: Renewable Energy Is Growing – But Not Fast Enough Related Articles News: Technical Corn Oil for Renewable Diesel News: Investing in Renewable Fuels News: Together Must Be The Motto in Europe Magazine: Brewery Waste as Renewable Energy Source For the first time, renewables have overtaken fossil fuels to become the EU's main source of electricity in 2020. This is an important step in the transformation of European electricity generation, but only a small one compared to the planned goal of 55 % greenhouse gas reductions by 2030 and climate neutrality by 2050 in Europe. The EU countries will need huge investments in infrastructure to transport renewable energies from the locations of their generation to the locations of consumption. Furthermore, for the desired transformation of European electricity generation, both pricing and taxation of energies (and greenhouse gas emissions) need to be coordinated such that the EU remains competitive and effective incentives are set. Global data also show that the overall electricity transition is not progressing in line with climate targets. Clean power generation is not yet being built fast enough to keep pace with the rising electricity demand. Wind and solar power plants make up the bulk, but their growth has slowed in recent years. Even the temporary drop in electricity demand due to the COVID-19 pandemic is not enough to put the world on track and electricity demand will undoubtedly pick up soon, especially as the world seeks to electrify all sectors that still rely on fossil fuels. Solutions and more ambition worldwide are needed urgently. European Union The chart below shows the EU's energy sources since 2020. The graph below shows the ratio of renewable to fossil energy sources in various European countries in 2020. The EU has set itself the goal of becoming climate neutral by 2050. The graph below shows the targets for 2030 and 2050 compared to the CO2 emissions since 1990. The graph below shows electricity prices in Euro per kWh in different European countries. The extreme differences are an important aspect for competitiveness. Electricity prices EU 2020 World The graph below shows the ratio of renewable to fossil energy sources in various G20 countries in 2020. The chart below shows the world's dependence on fossil fuels and how the energy needs of individual regions compare. References Agora Energiewende and Ember, The European Power Sector in 2020: Up-to-Date Analysis on the Electricity Transition, January 2021. Dave Jones, Global-Electricity-Review-2021, March 2021. Electricity price statistics, Eurostat April 2021. (accessed May 31, 2021) Also of Interest The New EU Chemicals Strategy, ChemistryViews 13 May 2021. https://doi.org/10.1002/chemv.202100040 Article Views: 82 Comment on this Article Please enter your comment Subject: Comment: Enter text Please note that to comment on an article you must be registered and logged in. Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation. Article Comments Site Breadcrumb ChemViews Magazine Magazine Articles Renewable Energy Is Growing – But Not Fast Enough

ChemViews ◽  
2021 ◽  
Author(s):  
ChemistryViews

Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Qusay Hassan ◽  
Saadoon Abdul Hafedh ◽  
Ali Hasan ◽  
Marek Jaszczur

Abstract The study evaluates the visibility of solar photovoltaic power plant construction for electricity generation based on a 20 MW capacity. The assessment was performed for four main cities in Iraq by using hourly experimental weather data (solar irradiance, wind speed, and ambient temperature). The experimental data was measured for the period from 1st January to 31st December of the year 2019, where the simulation process was performed at a 1 h time step resolution at the same resolution as the experimental data. There are two positionings considered for solar photovoltaic modules: (i) annual optimum tilt angle and (ii) two-axis tracking system. The effect of the ambient temperature and wind on the overall system energy generated was taken into consideration. The study is targeted at evaluating the potential solar energy in Iraq and the viability of electricity generation using a 20 MW solar photovoltaic power plant. The results showed that the overall performance of the suggested power plant capacity is highly dependent on the solar irradiance intensity and the ambient temperature with wind speed. The current 20 MW solar photovoltaic power plant capacity shows the highest energy that can be generated in the mid-western region and the lowest in the northeast regions. The greatest influence of the ambient temperature on the energy genrated by power plants is observed in the southern regions.


Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Talat Ozden

AbstractThe world is still heavily using nonconventional energy sources, which are worryingly based on carbon. The step is now alternative energy sources hoping that they will be more environmentally friendly. One of the important energy conversion forms by using these sources is photovoltaic solar systems. These type of power plants is on the increase in everyday on the world. Before investment a solar power plant in a specified region, a techno-economic analyse is performed for that power plant by using several meteorological data like solar irradiance and ambient temperature. However, this analyses generally lacks evaluation on effects of climatic and geographical conditions. In this work, 5 years of data of 27 grid-connected photovoltaic power plants are investigated, which are installed on seven different climate types in Turkey. Firstly, the power plants are categorized considering the tilt angles and Köppen–Gieger climate classification. The performance evaluations of the plants are mainly conducted using monthly average efficiencies and specific yields. The monthly average efficiencies, which were classified using the tilts and climate types were from 12 to 17%, from 12 to 16% and from 13 to 15% for tilts 30°/10°, 25° and 20°, respectively. The variation in the specific yields decrease with elevation as y(x) =  − 0.068x + 1707.29 (kWh/kWp). As the performances of photovoltaic systems for some locations within the Csb climatic regions may relatively lower than some other regions with same climate type. Thus, techno-economic performance for PVPP located in this climate classification should be carefully treated.


Author(s):  
V. V. Shevchenko ◽  
A. N. Minko ◽  
M. Dimov

The paper defines the directions of improving turbogenerators as the basis for ensuring the energy independence of Ukraine. The analysis of the state, problems and prospects for the development of modern electric power industry. Goal of the work is to identify promising directions for sustainable development of the national electric power industry in order to ensure energy security of Ukraine, to conduct a comparative analysis of electricity sources, to confirm the need to improve the main sources – turbogenerators. Methodology. During the research, an analytical analysis of the electricity sources, which are installed at power plants in Ukraine and the world, was carried out, taking into account the growth of the planet's population and its energy activity. Cyclic theory was chosen as the theoretical basis for forecasting. On the basis of this theory, global development trends, advantages and disadvantages of currently used sources of electricity - thermal (including nuclear) power plants and stations that operate from renewable energy sources - have been established. A review of literary sources on the methods of the energy sector forecasting the development, including the development of the energy sector in Ukraine, has been carried out. Originality. It has been established that due to the active growth of the planet's population, with the increase in its energy activity, obtaining electricity from renewable energy sources is not enough, that for the next 20-30 years nuclear power plants will be the main sources of electricity. The internal and external threats to the energy security of Ukraine, directions of development of turbogenerator construction, ways to improve turbogenerators, to increase their energy efficiency, power per unit of performance, to increase the readiness and maneuverability factors, and overload capacity have been identified. Practical significance. The need to continue the modernization and improvement of the turbogenerators of nuclear power plant units, as the main sources of electricity, has been proved. The directions of their improvement are established: increasing the power in the established sizes, making changes to the design of the turbogenerators inactive elements, replacing the cooling agent to keep Ukrainian turbogenerators at the world level, improving auxiliary systems, improving and increasing the reliability of the excitation system, introduction of automatic systems for monitoring the state turbogenerators. Possible limits of use, advantages, disadvantages and problems of using renewable energy sources for Ukraine have been established.


2020 ◽  
pp. 117-133
Author(s):  
L.Hr. Melnyk ◽  
O.N. Derykolenko ◽  
Yu.O. Mazin ◽  
O.I. Matsenko ◽  
V.S. Piven

Energy security and independence is one of the key points in sustainable development. In modern conditions of rapid growth and development of technologies, more and more attention is paid to finding practical solutions for environmentally friendly and inexpensive energy production. For a long time, scientists from various fields of scientific activity around the world have been engaged in the development and use of alternative energy sources. The share of renewable energy sources in the generation of electricity around the world is growing steadily, which indicates an increase in the use of energy obtained from alternative sources, such as, for example, wind and sun. These trends testify to the desire of consumers to abandon the use of fossil energy sources and nuclear power plants as much as possible in order to ensure further sister development. Under the current conditions of the COVID-19 pandemic, the demand for electricity worldwide has decreased, however, as the study shows, this pandemic has not affected the development of renewable energy. The article analyzes modern trends in the development of renewable energy, taking into account the experience of the EU countries and leading countries of the world in this area. As a result, it was concluded that in modern conditions, to achieve sustainable development, transformation processes are needed in such an important area as energy. Various processes in the global economy, which contributed to the intensive development of alternative energy sources, served as a powerful impetus for such changes. Many countries have made significant progress in the development of renewable energy.


Author(s):  
Obumneme Oken

Nigeria has some surface phenomena that indicate the presence of viable geothermal energy. None of these locations have been explored extensively to determine the feasibility of sustainable geothermal energy development for electricity generation or direct heating. In this context, the present study aims to provide insight into the energy potential of such development based on the enthalpy estimation of geothermal reservoirs. This particular project was conducted to determine the amount of energy that can be gotten from a geothermal reservoir for electricity generation and direct heating based on the estimated enthalpy of the geothermal fluid. The process route chosen for this project is the single-flash geothermal power plant because of the temperature (180℃) and unique property of the geothermal fluid (a mixture of hot water and steam that exists as a liquid under high pressure). The Ikogosi warm spring in Ekiti State, Nigeria was chosen as the site location for this power plant. To support food security efforts in Africa, this project proposes the cascading of a hot water stream from the flash tank to serve direct heat purposes in agriculture for food preservation, before re-injection to the reservoir. The flowrate of the geothermal fluid to the flash separator was chosen as 3125 tonnes/hr. The power output from a single well using a single flash geothermal plant was evaluated to be 11.3 MW*. This result was obtained by applying basic thermodynamic principles, including material balance, energy balance, and enthalpy calculations. This particular project is a prelude to a robust model that will accurately determine the power capacity of geothermal power plants based on the enthalpy of fluid and different plant designs.


Sign in / Sign up

Export Citation Format

Share Document