scholarly journals Biodegradation of Tannic Acid, Chromium and Cadmium Present in Leather Industrial Effluents Using Microorganisms Isolated from Leather Industrial Sludge

2021 ◽  
Vol 8 (12) ◽  
pp. 503-512
Author(s):  
Roselin K ◽  
J. Caroline Rose

The present work was aimed to isolate indigenous predominant adapted Bacterial strains from tannery waste which possess the ability to detoxify and degrade Tannic acid, Chromium and Cadmium from tannery effluent. Fifteen bacterial strains were isolated from tannery sludge samples out of which Paracoccus pantotrophus (Tannery Waste 15) and Bacillus velezensis (Tannery Waste 17) were found to be the most efficient isolates. Degradation of Tannic acid, Cadmium and Chromium were evaluated for the two selected isolates. Better degradation of heavy metals was recorded in co-cultured media on day 7. From the study, it is evident that both P. pantotrophus and B. velezensis have has the ability to degrade tannic acid with maximum degradation on day 7 and absorbance was found to be 0.915 and 0.383 respectively. The strain P. pantotrophus showed better tannic acid degradation than B. velezensis. Better degradation was observed with co-culturing of both the strains with absorbance of 0.274. Optimal cadmium degradation was observed on day 7 with OD 2.013 and 1.709 for B. velezensis and P. pantotrophus respectively. P. pantotrophus showed better cadmium degradation when compared to B. velezensis. Chromium degradation was maximum on day 7 and absorbance was 2.096 for P. pantotrophus and 0.560 for B. velezensis. The isolates recorded an acceptable reduction in the concentration of Tannin, Chromium and Cadmium in tannery effluent. The results of this showed that the isolates reduced the concentration of Tannin, Chromium and Cadmium present in the raw tannery effluent and suggest that the organisms can be used as a possible treatment of tannery effluents. Keywords: Bio-degradation, Bacillus velezensis, Paracoccuspantotrophus, Chromium, Cadmium, Tannic acid, Tannery effluent.

2014 ◽  
Vol 2 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Poonam Gupta ◽  
Monika Asthana ◽  
Avnish Kumar ◽  
Siddhartha Barun

Pollution has arisen as a serious environmental concern to the present world after industrialization of human societies. It has severely affected our air, soil and water sources. Looking to its global, national, regional and local dimensions, it is now imperative to check it at each and every level. In the present study, 8 samples (3 Yamuna water samples, 3 tannery effluent samples and 2 textile effluent samples), were collected from different sites of Yamuna and exit points of textile and tannery Industries. Water and effluent samples were analysed for various physicochemical parameters (pH, TDS, hardness, chloride and BOD) using conventional methods. Afterwards these samples were utilized for isolation of the native bacterial species. All the samples were showing higher than the standard values for TDS (500mg/l), hardness (80-100 mg/l), chloride (250mg/l) and BOD (30mg/l). It was observed that the tannery effluents were showing maximum TDS values(1190-1240mg/l), followed by textile effluents (1190 and 1210mg/l) and Yamuna water (530-1180mg/l).Similarly, in case of chloride content, highest concentration range(828.8-1598mg/l)was shown by tannery effluents.  pH value was nearly neutral for Yamuna water, slightly  acidic in case of textile effluents and more acidic for tannery samples. Highest range of hardness values were observed for the tannery effluents (860-880mg/l) followed by textile effluents (760 and 860mg/l). The BOD values were nearly similar for all the samples with maximum values being observed for tannery effluents (42-48 mg/l). Thus it can be inferred that all the samples were highly polluted and need to be treated by suitable methods. There were 11 cultures purified, that could be employed in bioremediation purposes.DOI: http://dx.doi.org/10.3126/ijasbt.v2i2.10352Int J Appl Sci Biotechnol, Vol. 2(2): 199-205 


2020 ◽  
Vol 7 (2) ◽  
pp. 63-67
Author(s):  
Mathivanan R ◽  
Chandirasekar R

Tannery effluents having the different kind’s chemical compounds are extensively used to the production of leather industries and it’s considered as rich potential of environmental pollutant.Earthworms are easily affecting the toxic chemical in environmentally and in this organism is good experimental animal for monitoring the soil pollution and terrestrial ecosystem. In this study, we taken from the industrial raw tannery effluents and the experimental animal in earthworm species of Eudrilus eugeniae (10 for each group) were introduced to 48 hrs for tannery effluent in five different concentrations like 10 ml, 20ml, 30ml, 40 ml, and 50 ml and to find out LC50 level. The LC50 was found at 35 ml concentration. The study was used to the LC50/2, LC50, 2XLC50 for 48 hrs. Then the genotoxicity level was evaluated in Eudrilus eugeniae species. After that we collect earthworm’s coelomocytes by using the micronucleus (MN) test and comet assay (CA) test. Result of the study, MN and CA level was significantly increased in both genotoxicity and cytotoxicity assays and the high concentration of effluent to promote the increased level of DNA damage and micronucleus in Eudrilus eugenie species.


2020 ◽  
Vol 10 (3) ◽  
pp. 73-77
Author(s):  
Jenny Sivakumar ◽  
Malliga Perumal

Environmental pollution, especially of water bodies, is one of the major problems and it is increased day by day. The contamination of environment with various toxic metals is a serious threat for ecosystem and human health. Industrial effluents may contain toxic metals, harmful volatile compounds and several organic and inorganic compounds such as chromium, cadmium, mercury, arsenic and lead which are directly or indirectly discharged into the environment without adequate treatment. However, tannery industries are the major source of chromium contamination into the environment. Tanneries are typically characterized as pollution intensive industrial complexes which generate widely varying, high-strength wastewaters. The discharge of these toxic effluents has been a major loss from the ecological, social and economic perspective. There are many conventional physiochemical methods available for the removal of heavy metals from the tannery effluents that are highly expensive and require skilled techniques. However, microbial reduction of toxic chromium to non-toxic chromium by chromium resistance microorganism is the most pragmatic approach that offers an economical as well as eco-friendly process. Hence, this study examines the biodegradation of tannery effluent and its impacts on the germination of Oryza sativa seeds.


2020 ◽  
Author(s):  
Jhuma Biswas ◽  
AK Paul

Abstract The present study was aimed to characterize the chromate reducing ability of cells and cell-free extract (CFE) of Halomonas smyrnensis KS802 (GenBank Accession No. KU982965) and evaluate their effectiveness in tannery effluents. Viable cells of the strain reduced 200 µM Cr(VI) in basal medium for halophiles (MH) in 10 h and was inversely proportional to Cr(VI) concentrations. The rapid reduction by cells (10⁹ cells/mL) was achieved with 7.5% NaCl, at pH 7 and 37°C which increased with increasing cell density (10¹° cells/mL). While acetate, Cu³⁺, Fe³⁺, SO₄²⁻, and CO₃²⁻ were stimulating the reduction, the inhibitors retarded the process significantly. The NADH-dependent chromate reduction of the CFE was found to be constitutive with Km and Vmax values of 56.58 µM and 3.37 µM/min/mg protein respectively. The optimal reductase activity of the CFE was evident at 200 µM Cr(VI), 10% NaCl, pH 8.0 and at 45°C. A higher concentration of CFE and electron donors increased the enzyme activity but was impacted negatively by toxic metals and anions. Both the cells and CFE were capable of reducing Cr(VI) remarkably from tannery effluent. FTIR and XRD spectra of chromate reducing cells confirmed possible complexation of reduced Cr-species with functional groups on cell surface.


Author(s):  
Naif Abdullah Al-Dhabi ◽  
Galal Ali Esmail ◽  
Abdul-Kareem Mohammed Ghilan ◽  
Mariadhas Valan Arasu

In this study, 23 bacterial strains were isolated from a Cadmium (Cd) contaminated soil in the industrial city, Riyadh of Saudi Arabia. Among these isolates six strains were found to withstand cadmium contamination and grow well. From the six isolates Pseudomonas sp. strain Al-Dhabi-122–127 were found to resist cadmium toxicity to a higher level. The isolates were subjected to biochemical and 16S rDNA gene sequence characterization to confirm their identification. The bacterial strain Al-Dhabi-124 showed 1.5 times higher Cd-degrading activity than Al-Dhabi-122 and Al-Dhabi-123, and Al-Dhabi-126 exhibited 3.5 times higher Cd-degrading activity, higher than the other strains. An atomic absorption spectrophotometer study showed that the strain Al-Dhabi-126 absorbed Cd, and that the bacterial strain Al-Dhabi-126 was found to tolerate cadmium level up to 2100 µg/mL. The bacterial strain Al-Dhabi-126 showed a maximum Cd removal efficacy at pH between 6.0 and 8.0. The efficacy decreased sharply after an increase in pH (9.0). An optimum temperature of 50 °C and pH 6.0 were found to be effective for the Cd removal process by the isolate. The study indicated that the bacterial strain Al-Dhabi-126 can be used effectively for the bioremediation of heavy metals like cadmium, a major toxic pollutant in industrial effluents.


2018 ◽  
Vol 77 (5) ◽  
pp. 1262-1270 ◽  
Author(s):  
Sobia Ashraf ◽  
Muhammad Afzal ◽  
Khadeeja Rehman ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir

Abstract Liquid effluent produced from tanning industries is loaded with organic and inorganic contaminants, particularly heavy metals, which may cause severe damage to the ecosystem. Constructed wetland (CW) is a promising product of the research in the field of ecological engineering which helps to overcome aquatic pollution. This investigation aims to develop a plant–endophyte synergism in CW for the efficient remediation of tannery effluent. In a vertical flow CW, Brachiaria mutica was vegetated and augmented with three endophytic bacterial strains. Results showed a reduction of 82% in COD, 94% in BOD5, and 95% in Cr by plant–endophyte synergism in CWs and it was significantly higher than the use of plants alone. Similarly, nutrients (N and P), lipids, ion content, SO42−, and Cl− showed similar reduction by the combined action of endophytes and B. mutica in CWs. The endophytes inoculation enhanced bacterial population in different compartments of the plants vegetated in CWs and the maximum was observed in the roots. This study revealed that plant–endophyte synergism in CWs can enhance the remediation of industrial wastewater.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1284
Author(s):  
María Isabel Igeño ◽  
Daniel Macías ◽  
María Isabel Guijo ◽  
Rubén Sánchez-Clemente ◽  
Ana G. Población ◽  
...  

Most cyanide-containing industrial effluents also contain other cyano-derivatives and high amounts of metals and metal-cyanide compounds. For this reason, the biotreatment of these wastes requires the use of microorganisms capable to degrade all these different cyano-compounds and to tolerate metals. Pseudomonas pseudoalcaligenes CECT 5344 is a cyanotrophic bacterium capable of metabolize cyanide in its free form, but it is not very efficient at degrading metal-cyanide complexes. Therefore, for the optimization of the cyanide biodegradation process it is essential to find and characterize new bacterial strains, capable of assimilating metal cyanide-complexes, to complement the capacities of P. pseudoalcaligenes CECT 5344.


2020 ◽  
Vol 32 (6) ◽  
pp. 1491-1496
Author(s):  
Fatimah M. Alzahrani ◽  
Stephen G. Yeates ◽  
Michelle Webb ◽  
Hind Ali Alghamdi

In this study, the antibacterial activity of tannic acid/amphiphilic cationic polymer (poly{2-[(methacryloyloxy)ethyl]trimethyl-ammonium chloride}, PMADQUAT) and tannic acid mixtures was examined on the strains of Gram-positive (S. aureus) and Gram-negative (E. coli CI2, E. coli K12, Klebsiella pneumonia and P. aeruginosa) bacteria. Tannic acid exhibited the antibacterial activity against all the studied bacterial strains. The ester linkage between glucose and gallic acid is vital for the antimicrobial activity of tannic acid. Tannic acid inhibited the growth of S. aureus and E. coli K12 (1 wt%) and reduced the growth of P. aeruginosa to 23%. Mixing cationic polymers having different structures (statistical copolymer, homopolymer and diblock polymer) with tannic acid lead to an increase in antibacterial activity of tannic acid and the stability and clarity of mixtures was higher than that of a pure tannic acid solution. Tannic acid/diblock polymer and tannic acid/homopolymer mixtures (0.1 wt%) were excellent for inhibiting the growth of planktonic E. coli K12 bacteria, and a low concentration (0.0001 wt%) of tannic acid/diblock polymer reduced its growth to 19%. By contrast, the tannic acid/statistical polymer mixture (0.0001 wt%) was excellent for inhibiting the growth of Gram-positive S. aureus bacteria.


2013 ◽  
Vol 849 ◽  
pp. 397-404
Author(s):  
Monica Puccini ◽  
Maurizia Seggiani ◽  
Domenico Castiello ◽  
Sandra Vitolo

Sludge from tannery effluent treatment processes is a by-product of leather-making industry, in which chrome compounds are the most common used materials. The objective of this work was to investigate the effects and feasibility in the use of tannery sludge ash as a partial or total replacement of usual mineral filler such as in manufacture of waterproofing membranes. The effects of sludge ash on the morphology and mechanical properties of membranes were investigated. Leaching tests were carried out in order to guarantee that the fulfilment of filler function was done in respect with environmental criteria. Besides, a Life Cycle Assessment (LCA) analysis was performed in order to assess the environmental performance of the waterproofing membrane filled by tannery sludge ash in comparison with the conventionally filled membrane. The performances of the membranes and the results of environmental assessment indicate that tannery sludge ash may be used as total replacement of CaCO3 for waterproofing membranes.


Sign in / Sign up

Export Citation Format

Share Document