Model Compound Vulcanization—Part I. Basic Studies

1979 ◽  
Vol 52 (2) ◽  
pp. 213-231 ◽  
Author(s):  
F. K. Lautenschlaeger

Abstract Rapid, yet reliable model compound vulcanization techniques have been developed in order to establish a link between MCV and vulcanizate properties. The main features of the new approach are the determination of the sulfidic product yield and a more extensive analysis of the isomer distribution. An increase in reaction time, a decrease in the sulfur level or an increase in the accelerator level lead to similar changes in the isomer distributions. Increasing zinc oxide levels lead to an increasing vulcanization efficiency. The isomer distribution is significantly affected by concentration changes. This has not been previously observed. A good correlation between MCV results and the analysis of sulfidic rubber networks in actual vulcanisates was observed.

1974 ◽  
Vol 20 (11) ◽  
pp. 1422-1430 ◽  
Author(s):  
Thomas E Cook ◽  
Michael J Milano ◽  
Harry L Pardue

Abstract We describe a unique new approach to analytical spectroscopy, which makes use of a silicon-target vidicon tube to rapidly and repetitively scan ultraviolet and visible spectra. We discuss the concept and characteristics of the vidicon spectrometer and illustrate its application to simultaneous determination of sodium and potassium in serum by flame photometry. Average values of coefficients of variation for sodium and potassium are 1.1% and 1.7%, respectively. Recoveries of sodium and potassium added to sera were 99.5% and 99.8%, respectively. When the same burner and flame conditions were used with the vidicon spectrometer and a conventional flame photometer, deviations among results were well within ±3 mmol/liter for sodium and 0.2 mmol/liter for potassium. A bias is observed for both elements when results obtained with an air-hydrogen flame are compared with results obtained with an air-propane flame. Our data illustrate that the vidicon spectrometer is a viable tool for both routine applications and basic studies of effects of flame conditions on two or more elements simultaneously.


2017 ◽  
Vol 30 (1) ◽  
pp. 273-289
Author(s):  
Anmari Meerkotter

The Constitutional Court (CC) judgment of Lee v Minister of Correction Services 2013 2SA 144 (CC) is a recent contribution to transformative constitutional jurisprudence in the field of the law of delict. This matter turned on the issue of factual causation in the context of wrongful and negligent systemic omissions by the state. In this case note, I explore the law relating to this element of delictual liability with specific regard to the traditional test for factual causation – the conditio sine qua non (‘but-for’) test. In particular, I note the problems occasioned by formalistic adherence to this test in the context of systemic state omissions as evidenced by the SCA judgment in the same matter. I also consider the manner in which English courts have addressed this problem. Thereafter, I analyse the CC’s broader approach to the determination of factual causation as one based on common sense and justice. I argue that this approach endorses a break from a formalistic application of the test and constitutes a step towards an approach which resonates with the foundational constitutional values of freedom, dignity and equality. Furthermore, it presents an appropriate solution to the problems associated with factual causation where systemic omissions are concerned. I then consider the transformative impact of the Lee judgment. In particular, I argue that the broader enquiry favoured by the CC facilitates the realisation of constitutionally guaranteed state accountability, and amounts to an extension of the existing norm of accountability jurisprudence. Hence, I contend that the judgment presents a further effort by the Constitutional Court to effect wholesale the constitutionalisation of the law of delict, as well as a vindicatory tool to be used by litigants who have been adversely affected by systemic state omissions.


Author(s):  
Romain Desplats ◽  
Timothee Dargnies ◽  
Jean-Christophe Courrege ◽  
Philippe Perdu ◽  
Jean-Louis Noullet

Abstract Focused Ion Beam (FIB) tools are widely used for Integrated Circuit (IC) debug and repair. With the increasing density of recent semiconductor devices, FIB operations are increasingly challenged, requiring access through 4 or more metal layers to reach a metal line of interest. In some cases, accessibility from the front side, through these metal layers, is so limited that backside FIB operations appear to be the most appropriate approach. The questions to be resolved before starting frontside or backside FIB operations on a device are: 1. Is it do-able, are the metal lines accessible? 2. What is the optimal positioning (e.g. accessing a metal 2 line is much faster and easier than digging down to a metal 6 line)? (for the backside) 3. What risk, time and cost are involved in FIB operations? In this paper, we will present a new approach, which allows the FIB user or designer to calculate the optimal FIB operation for debug and IC repair. It automatically selects the fastest and easiest milling and deposition FIB operations.


1992 ◽  
Vol 57 (11) ◽  
pp. 2272-2278 ◽  
Author(s):  
Václav Koula ◽  
Daria Kučová ◽  
Jiří Gasparič

The combination of ion-pair extraction and differential pulse polarography is shown to be a method suitable for the determination of 10-7 mol l-1 concentrations of organic bases of quaternary ammonium compounds. Orange II (4-[2-hydroxy-1-naphtyl]azobenzenesulfonic acid) was found to be an appropriate polarographically active counter-ion. The proposed method was used for the determination of tetrapentylammonium bromide (as model compound), Septonex ([1-(ethoxycarbonyl)-pentadecyl]trimethylammonium bromide) and codeine.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3070
Author(s):  
Sebastian Iwaszenko ◽  
Jakub Munk ◽  
Stefan Baron ◽  
Adam Smoliński

Modern dentistry commonly uses a variety of imaging methods to support diagnosis and treatment. Among them, cone beam computed tomography (CBCT) is particularly useful in presenting head structures, such as the temporomandibular joint (TMJ). The determination of the morphology of the joint is an important part of the diagnosis as well as the monitoring of the treatment results. It can be accomplished by measurement of the TMJ gap width at three selected places, taken at a specific cross-section. This study presents a new approach to these measurements. First, the CBCT images are denoised using curvilinear methods, and the volume of interest is determined. Then, the orientation of the vertical cross-section plane is computed based on segmented axial sections of the TMJ head. Finally, the cross-section plane is used to determine the standardized locations, at which the width of the gap between condyle and fossa is measured. The elaborated method was tested on selected TMJ CBCT scans with satisfactory results. The proposed solution lays the basis for the development of an autonomous method of TMJ index identification.


Sign in / Sign up

Export Citation Format

Share Document