Environmental Effects on RFL Adhesion

1974 ◽  
Vol 47 (5) ◽  
pp. 1066-1073 ◽  
Author(s):  
H. M. Wenghoefer

Abstract Adhesion deterioration of RFL-dipped tire cord resulting from environmental factors such as ozone, nitrogen dioxide, humidity, ultraviolet light, and heat was investigated to quantify the amount of adhesion loss and to establish the mode of adhesion failure. It was found that ozone, humidity, and ultraviolet light cause substantial adhesion deterioration, especially during the initial hours of exposure. Synergistic effects of ozone/humidity were noted. Less pronounced was the detrimental effect of heat. Adhesion loss because of nitrogen dioxide or synergistic effects of nitrogen dioxide/humidity was not seen. Adhesion loss occurred most rapidly during the first six hours of ozone/humidity exposure, regardless of fiber or adhesive system used. Adhesive treated cords of nylon, polyester, and “Kevlar” aramid showed loss in adhesion; however, no correlation between type of fiber and extent of adhesion deterioration was found. The extent of adhesion deterioration was primarily dependent upon the specific adhesive dip used. Sensitivity of the RFL adhesives to ozone/humidity varied with one- and two-step adhesive systems; with polyester, one-step adhesive systems tested were generally less sensitive to environmental conditions than two-step adhesive systems. The latter, however, had better initial adhesion. Adhesion loss because of ultraviolet light exposure was severe for all RFL adhesives, regardless of fiber. Emission of ultraviolet light from fluorescent lighting was shown to be sufficiently intense to affect adhesion. The physical properties of RFL-dip films were unaffected by ozone or ultraviolet exposure, ruling out cohesive failure of the RFL adhesive as a cause of adhesion breakdown. Adhesion failure for samples tested after environmental exposure occurred at the RFL adhesive-rubber stock interface, indicating the adhesion deterioration to be a RFL surface phenomenon.

2018 ◽  
Vol 69 (10) ◽  
Author(s):  
Ioana Hodisan ◽  
Cristina Prejmerean ◽  
Tinca Buruiana ◽  
Doina Prodan ◽  
Loredana Colceriu ◽  
...  

The aim of this work was to reduce microleakage in giomer restorations by using innovative materials in both adhesive systems and light-cured dental giomer. Two adhesive systems with different primers were investigated. The innovative compounds in the primers were acrylic acid (AA)/itaconic acid (IA) copolymer modified with methacrylic groups and AA/IA/N-acryloyl-L-leucine copolymer grafted with methacrylic groups. In addition, the investigated new giomer G contains a pre-reacted glass based on the latter copolymer. The commercial Beautifil II giomer and the FL-Bond II adhesive system were used for comparison. Microleakage was evaluated by determining the scores and percentages of dye penetration lengths after thermocycling of a series of light-cured dental giomer restorations performed on 42 premolars extracted for orthodontic reasons. A lower microleakage value was recorded for the adhesive system containing the AA/IA/N-acryloyl-L-leucine copolymer grafted with methacrylic groups than for the commercial adhesive, which was in substantial agreement with SEM and AFM investigations. In this case, remarkable dentin sealing and a strong adhesion at the giomer restoration�tooth interface was observed, and the innovative adhesive was proven to be promising for dental applications.


Planta ◽  
2003 ◽  
Vol 217 (3) ◽  
pp. 457-465 ◽  
Author(s):  
Tanja Marwedel ◽  
Toyotaka Ishibashi ◽  
Ren� Lorbiecke ◽  
Silke Jacob ◽  
Kengo Sakaguchi ◽  
...  

1995 ◽  
Vol 74 (5) ◽  
pp. 493-498 ◽  
Author(s):  
Mark W. Beatty ◽  
Gordon K. Mahanna ◽  
Kurt Dick ◽  
Wenyi Jia

2004 ◽  
Vol 18 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Fabiana Mantovani Gomes França ◽  
Flávio Henrique Baggio Aguiar ◽  
Alex José Souza dos Santos ◽  
José Roberto Lovadino

The aim of this in vitro study was to evaluate quantitatively the microleakage in class V cavities restored with one-bottle and self-etching adhesive systems with and without previous acid etching. Two one-bottle adhesive systems (Single Bond and Prime & Bond 2.1) and one self-etching adhesive system (Clearfil Mega Bond) were used in this study. One hundred and twenty sound human premolar teeth were randomly divided into 6 groups, and 20 class V restorations were prepared in the root dentin to test each bonding system. Each bonding system was used with and without acid etching. Specimens were prepared, dyed with 2% methylene blue, sectioned, triturated, and evaluated with an absorbance spectrophotometer test in order to quantify the infiltrated dye. Results were statistically evaluated by ANOVA and Tukey-Kramer test. No statistically significant differences were found among the adhesive systems when no etching agent was used. However, the Single Bond adhesive system showed statistically significant lower microleakage means than Clearfil Mega Bond and Prime & Bond 2.1 when 37% phosphoric acid was used. Single Bond and Clearfil Mega Bond adhesive systems presented similar behavior when the manufacturers' instructions were followed.


2002 ◽  
Vol 16 (2) ◽  
pp. 115-120 ◽  
Author(s):  
César Augusto Galvão Arrais ◽  
Marcelo Giannini

The formation of a hybrid layer is the main bonding mechanism of current dentin-bonding systems. This study evaluated the morphology and thickness of the resin-infiltrated dentinal layer after the application of adhesive systems. The dentin-bonding agents were evaluated on flat dentinal preparations confected on the occlusal surfaces of human teeth. The test specimens were prepared and inspected under scanning electron microscopy at a magnification of X 2,000. The adhesive systems were responsible for different hybrid layer thicknesses (p < 0.05), and the mean values were: for Scotchbond MP Plus (SM), 7.41 ± 1.24mum; for Single Bond (SB), 5.55 ± 0.82mum; for Etch & Prime 3.0 (EP), 3.86 ± 1.17mum; and for Clearfil SE Bond (CB), 1.22 ± 0.45mum. The results suggest that the conventional three-step adhesive system (SM) was responsible for the thickest hybrid layer, followed by the one-bottle adhesive (SB). The self-etching adhesives, EP and CB, produced the formation of the thinnest hybrid layers.


2007 ◽  
Vol 31 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Carla Miranda ◽  
Luiz Henrique Maykot Prates ◽  
Ricardo de Souza Vieira ◽  
Maria Cristina Marino Calvo

The aims of this study were to evaluate the shear bond strength (SBS) of four adhesive systems applied to primary dentin and enamel and verify, after SBS testing, the failure mode of the adhesive interface. Sixty extracted sound primary molars were selected and crowns were sectioned in a mesial-distal direction. Specimens were randomly assigned into two groups (adhesion to enamel and adhesion to dentin) and then subdivided into four subgroups according to the adhesive system (n=15): Scotchbond Multi-Purpose (SMP) – Single Bond (SB) – Clearfil SE Bond (and Adper Prompt LPop (APL) – SBS tests were performed and the obtained values were statistically analyzed using ANOVA and Tukey tests (p&lt;0.05). The failure mode analysis was performed with a Scanning Electron Microscope (XL-30, Philips). SBS mean values on enamel were [MPa (SD)]: SMP – 27.89 (7.49); SB – 23.92 (8.8); CSB – 24.36 (6.69); APL – 25.96 (4.08); and on dentin: SMP – 17.29 (4.25); SB – 18.2 (8.74); CSB – 16.13 (7.14); APL – 6.04 (3.35). The predominant failure mode was cohesive (primarily of the bonding agent). On enamel SBS was statistically similar for all four adhesives. On dentin SBS of APL was lower than the other tested adhesives.


2013 ◽  
Vol 10 (2) ◽  
pp. 183-191

The air pollution has a great impact on the social and economic aspects all over the world. Thus, the interaction of materials with the atmosphere has received increased attention nowadays. In order to estimate the impacts of air pollution on the solid surfaces a suitable scientific basis is developed and the well known Reversed Flow - Inverse Gas Chromatography, RF- IGC, is used. This dynamic experimental technique leads to very interesting experimental results through the determination of some important physicochemical quantities. The solids studied were Pentelic marble, white TiO2 pigment, ceramic and the gases were NO2 and C2H2. The synergistic effects between acetylene and nitrogen dioxide were also investigated. Through the curves obtained for each adsorption quantity determined versus time, one can easily and accurately conclude the result of the pollution impact on every solid mentioned above. The surface topography and the mechanism of deterioration can also be studied. All the above answer in detail to the questions of where, when and how the influence of gas pollutants on materials of cultural heritage takes place.


Sign in / Sign up

Export Citation Format

Share Document