Strength of Elastomers. A Perspective

1978 ◽  
Vol 51 (2) ◽  
pp. 225-252 ◽  
Author(s):  
Thor L. Smith

Abstract The strength and extensibility of an elastomer depend on its overall viscoelastic properties, as reflected in the time and temperature dependence of stress-strain curves, and also on those discrete processes, including crack formation and growth, that culminate in high-speed crack propagation. The discrete processes determine the lifetime of a specimen; the viscoelastic characteristics affect the dependence of stress on deformation. The interplay between these effects causes strength and extensibility to depend strongly on test conditions. An elastomeric network composed solely of highly mobile chains is very weak indeed and fractures at a low elongation. This characteristic differs diametrically from that expected of an idealized network of mobile chains. If such a network were stretched, stress concentrations and unbalanced forces at the molecular level, which can result from short chains, entanglements, and network imperfections, would be vitiated rapidly by stress-biased segmental diffusion, especially at the elevated temperature. Therefore the network should be able to withstand a high elongation and thus a high stress. Hence, the low strength always exhibited by a single-phase non-crystallizable elastomer at elevated temperatures is incompatible with the characteristics ascribed to a network in the molecular theory of rubber elasticity. A network of mobile chains is weak for two reasons. First, microcracks develop readily in a stretched specimen. Their formation is usually attributed to stress concentrations near heterogeneties either within or on the surface of a specimen. Second, and most importantly, a microcrack—once it forms—encounters little resistance to growth because the chains are highly mobile. High strength results not because microcracks do not develop but because their growth is impeded. Unless processes that impede growth come into play, a microcrack enlarges rapidly and catastrophic propagation soon follows. When chain mobility is relatively low, the dissipation of energy through viscoelastic processes near the tip of a slowly growing crack retards its progressive growth. But this source of strength is rather ineffective except within narrow ranges of temperature and extension rate, or time scale more generally. Thus, high strength and toughness result from other mechanisms that impede crack growth. Effective mechanisms usually come into play and impart toughness if colloidal particulate fillers or plastic domains are present, except at low concentration.

Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


2001 ◽  
Vol 687 ◽  
Author(s):  
Dongwon Choi ◽  
Robert J. Shinavski ◽  
Wayne S. Steffier ◽  
Skip Hoyt ◽  
S.Mark Spearing

AbstractA MEMS-based gas turbine engine is being developed for use as a button-sized portable power generator or micro-aircraft propulsion source. Power densities expected for the micro- engine require high combustor exit temperatures (1300-1700K) and very high rotor peripheral speeds (300-600m/s). These harsh operating conditions induce high stress levels in the engine structure, and thus require refractory materials with high strength. Silicon carbide has been chosen as the most promising material for use in the near future due to its high strength and chemical inertness at elevated temperatures. However, techniques for microfabricating single- crystal silicon carbide to the level of high precision needed for the micro-engine are not currently available. To circumvent this limitation and to take advantage of the well-established precise silicon microfabrication technologies, silicon-silicon carbide (SiC) hybrid turbine structures are being developed using chemical vapor deposition of poly-SiC on silicon wafers and wafer bonding processes. Residual stress control of SiC coatings is of critical importance to all the silicon-silicon carbide hybrid structure fabrication steps since a high level of residual stresses causes wafer cracking during the planarization, as well as excessive wafer bow, which is detrimental to the subsequent planarization and bonding processes. The origins of the residual stresses in CVD SiC layers have been studied. SiC layers (as thick as 30µm) with low residual stresses (on the order of several tens of MPa) have been produced by controlling CVD process parameters such as temperature and gas ratio. Wafer-level SiC planarization has been accomplished by mechanical polishing using diamond grit and bonding processes are currently under development using interlayer materials such as silicon dioxide or poly-silicon. These process development efforts will be reviewed in the context of the overall micro-engine development program.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1308
Author(s):  
Wenjie Wang ◽  
Jie Yang ◽  
Haofeng Chen ◽  
Qianyu Yang

During the crack propagation process, the crack-branching behavior makes fracture more unpredictable. However, compared with the crack-branching behavior that occurs in brittle materials or ductile materials under dynamic loading, the branching behavior has been rarely reported in welded joints under quasi-static loading. Understanding the branching criterion or the mechanism governing the bifurcation of a crack in welded joints is still a challenge. In this work, three kinds of crack-branching models that reflect simplified welded joints were designed, and the aim of the present paper is to find and capture the crack-branching behavior in welded joints and to shed light on its branching mechanism. The results show that as long as there is another large enough propagation trend that is different from the original crack propagation direction, then crack-branching behavior occurs. A high strength mismatch that is induced by both the mechanical properties and dimensions of different regions is the key of crack branching in welded joints. Each crack branching is accompanied by three local high stress concentrations at the crack tip. Three pulling forces that are created by the three local high stress concentrations pull the crack, which propagates along with the directions of stress concentrations. Under the combined action of the three pulling forces, crack branching occurs, and two new cracks initiate from the middle of the pulling forces.


2004 ◽  
Vol 20 (03) ◽  
pp. 164-175
Author(s):  
J. Kecsmar ◽  
R. A. Shenoi

Designers are constantly looking for ways to reduce the structure weight to lower the overall displacement and hence the cost of fast ferries and other high-speed vessels. The easiest option for the designer is to choose a lightweight material. Aluminum has become the adopted choice of material for high-speed vessels owing to its high strength to weight characteristics. Unlike steel, aluminum is more prone to fatigue cracking and has no fatigue limit. In order to minimize weight, the designer will make use of finite element methods to optimize the scantlings and perform fatigue checks against established codes. This can lead to a structure that has the empirical margins of safety reduced owing to the accuracy of mathematical modeling. However, what is often overlooked is the effect the manufacturing process has on the fatigue life of the fabricated structure. This aspect is excluded from the designer's fatigue calculations, which assist in reducing the scantlings. Currently, there is no guidance for fatigue life reduction for the designer that establishes good and bad workshop practice, other than experience, or the implications of basic shipyard fabrication. It is shown that whereas strain-hardened alloys improve mechanical strength, they reduce ductility. This has consequences when forming the hull plate by potentially introducing crack like flaws into the alloy matrix if the plater overrolls the plate. If there is misalignment or there is too much gap between the plates, the weld will create localized stress concentrations. If the welder has poor joint preparation or gas shielding, porosity can be introduced into the weld. Porosity has a significant effect on the fatigue life of the weldment. This paper brings together a collection of data on such issues that the designer needs to be aware of to prevent an unwanted fatigue failure in the fabrication process.


Single-crystal films of gold in (111) orientation, and 500 to 2000 Å in thickness, have been prepared by an evaporation technique. A device has been constructed to allow these films to be strained in a controlled manner while under observation inside the electron microscope (Siemens Elmiskop I). It is shown, by the absence of observable plastic deformation, that the films deform elastically up to abnormally high strain values. This is confirmed, in the case of 500 Å films, by precision electron diffraction measurements, which indicate elastic strains as high as 1 to 1·5%. This represents a tensile strength several times that of hard-drawn gold wire. The high tensile strength occurs despite the presence of a high density of dislocations. Failure occurs once the elastic limit is exceeded. Detailed examination of the fractured specimens reveals that highly localized plastic deformation occurs immediately before fracture. The nature of the fracture process has been deduced from the micrographs, and it is shown that the catastrophic failure occurs as a result of the high stress level which exists when plastic deformation occurs, coupled with the stress concentrations which occur as localized thinning takes place.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Karthik Somasundaram ◽  
Anil Kalra ◽  
Don Sherman ◽  
Paul Begeman ◽  
King H. Yang ◽  
...  

Anthropometric test devices (ATDs) such as the Hybrid III dummy have been widely used in automotive crash tests to evaluate the risks of injury at different body regions. In recent years, researchers have started using automotive ATDs to study the high-speed vertical loading response caused by underbody blast impacts. This study analyzed the Hybrid III dummy responses to short-duration, large magnitude vertical accelerations in a laboratory setup. Two unique test conditions were investigated using a horizontal sled system to simulate underbody blast loading conditions. The biomechanical responses in terms of pelvis acceleration, chest acceleration, lumbar spine force, head accelerations, and neck forces were measured. Subsequently, a series of finite element (FE) analyses were performed to simulate the physical tests. The correlation between the Hybrid III test and numerical model was evaluated using the correlation and analysis (cora) version 3.6.1. The score for the Wayne State University (WSU) FE model was 0.878 and 0.790 for loading conditions 1 and 2, respectively, in which 1.0 indicated a perfect correlation between the experiment and the simulated response. With repetitive vertical impacts, the Hybrid III dummy pelvis showed a significant increase in peak acceleration accompanied by a rupture of the pelvis foam and flesh. The revised WSU Hybrid III model indicated high stress concentrations at the same location, providing a possible explanation for the material failure in actual Hybrid III tests.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1962 ◽  
Vol 11 (9) ◽  

Abstract UDIMET 520 is a nickel-base alloy recommended for applications where high strength at elevated temperatures is required. It is suitable for service at temperatures up to 1800 F. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-74. Producer or source: Special Metals Inc..


Alloy Digest ◽  
2020 ◽  
Vol 69 (4) ◽  

Abstract Rio Tinto Alloy 242.2 is a heat-treatable, aluminum-copper-magnesium-nickel casting alloy. It is available in the form of ingots to be remelted for the manufacture of sand and permanent mold castings. Alloy 242.0 is used extensively for applications requiring high strength and hardness at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, machining, and joining. Filing Code: Al-463. Producer or source: Rio Tinto Limited.


Sign in / Sign up

Export Citation Format

Share Document