Water Resistance of Neoprene

1938 ◽  
Vol 11 (2) ◽  
pp. 383-393
Author(s):  
Howard W. Starkweather ◽  
Herbert W. Walker

Abstract Superior water resistance of well-cured Neoprene, like that of natural rubber, depends upon the absence of water-soluble ingredients and agents that are capable of absorbing water. It has been shown that the water resistance of Neoprene varies greatly with different activating agents. This paper includes a more detailed study of the water absorption of Neoprene—magnesia—zinc oxide compounds and describes certain loaded stocks with improved water resistance. The water absorption was determined by the method already outlined, using slabs 0.20 cm. thick. Calculation of Water Absorption The water absorption can be calculated from the increase in weight or from the increase in volume of a stock during immersion in water. A difference between these values is an indication of chemically combined water. This is based upon the assumption that water undergoes no significant change in volume during absorption but that there is a change in volume during a chemical reaction. The two methods of calculating the absorption of water are shown by the equations:

2014 ◽  
Vol 6 (1) ◽  
pp. 13-17
Author(s):  
Arina Shaybadullina ◽  
Grigory Yakovlev ◽  
Grigory Pervushin ◽  
Irina Polynskih

The first mineral based lacquer and paint coating have been developed based on Portland cement and soda glass, which does not require traditional silicators of zinc oxide and is also capable of absorbing man-made radiation. A significant change in the structure of silicate paint has been achieved by its modification with multi-layered carbon nanotubes. The developed composition has water resistance, good adhesion to the base, the improved durability, is capable of operating at high temperatures; the life of coating is 3 times longer in comparison with its analogues.


2017 ◽  
Vol 737 ◽  
pp. 287-293
Author(s):  
Sudsiri Hemsri ◽  
Patthamas Bunsripirat ◽  
Punnakit Nakkarat

Wheat gluten (WG) plastics are inherently brittle and sensitive to water. In this research, wheat gluten was blended with epoxidized natural rubber containing 50 mol% epoxide group (ENR-50) to improve flexibility and water resistance of WG plastics. Three plasticizers (i.e. glycerol (Gly), polyethylene glycol (PEG) and dioctyl phthalate (DOP) were used to enhance polymer chain mobility and process ability of WG phase in the blends. Differential scanning calorimetry (DSC) was used to evaluate plasticizing efficiency of plasticizers on WG. The DSC result revealed that an excellent plasticizer for WG was glycerol which could remarkably reduce glass transition temperature (Tg) of WG. Furthermore, effect of plasticizer types and contents (0, 10, 20 and 30wt% with respect to protein weight) on morphology, mechanical properties and water absorption of the WG/ENR blends was investigated. It was found that an enhancement in ductility and impact strength of the blends was observed with increasing plasticizer content. Among the plasticized WG/ENR blends, the glycerol-plasticized blend provided better homogenous morphology and superior results in tensile and impact properties. On the other hand, the Gly-plasticized WG/ENR blend showed a low water resistance compared with the blends plasticized with PEG and DOP as well as the unplasticized WG/ENR blend.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dan Ren ◽  
Xuexia Zhang ◽  
Zixuan Yu ◽  
Hankun Wang ◽  
Yan Yu

AbstractIt is frequently observed that bamboo particle composites (BPCs) do not show higher mechanical performances than the corresponding wood particles composites (WPCs), although bulk bamboo is much stronger than wood in mechanical performances. Herein this phenomenon was demonstrated from the cell compositions in the applied bamboo particles. To address that, a simple method to physically separate bamboo fibers (BFs) and bamboo parenchyma cells (BPs) from a bamboo particle mixture was developed. Polypropylene (PP) composites with pure BFs, BPs, a mixture of BFs and BPs (BFs + BPs), wood particles (WPs) as fillers were prepared. The flexural and dynamic mechanical properties, water absorption, and thermal properties were determined. The BF/PP composites showed the best mechanical performances (MOR at 35 MPa, MOE at 2.4 GPa), followed by WP/PP, (BF + BP)/PP, and BP/PP. They also exhibited the lowest water absorption and thickness swelling. Little difference was found for the thermal decomposition properties. However, a lower activation energy of BF/PP compared with BP/PP implied an uneven dispersion of BFs and weaker interfacial interaction between BF and PP. The results suggest that the mechanical performances and water resistance of bamboo particle/polymer composites can be significantly improved through cell separation. However, interface modification should be applied if higher performances of BF/PP composites are required.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


Sign in / Sign up

Export Citation Format

Share Document