Processing Characteristics of Rubber Compounds- - -. Effect of Pigment Particle Size and Surface

1938 ◽  
Vol 11 (3) ◽  
pp. 585-590
Author(s):  
A. H. Nellen ◽  
C. E. Barnett

Abstract A STUDY of the processing properties imparted by any pigment to a rubber compound is important in determining the most effective and economical type of pigment for a particular purpose. For example, in a truck tire carcass compound where zinc oxide may be the main pigment, in order to obtain the maximum quality this zinc oxide should be of the type which will give a soft uncured stock and free-flowing qualities so that the cords in the carcass may be thoroughly impregnated during the calendering and curing processes. Also, in a tread compound where channel black is the main pigment, that type of black which will allow faster incorporation into the rubber, faster extrusion, and better flowing qualities will result in manufacturing economies. In the case of both the zinc oxides and the carbon blacks it is essential that these desirable processing characteristics be obtained without losses in other properties, such as rate of cure, tensile strength, and abrasion resistance.

1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


1953 ◽  
Vol 26 (1) ◽  
pp. 156-165
Author(s):  
Ira Williams

Abstract The presence of pigments in rubber compounds produces physical properties which are of importance both before and after vulcanization. The ability of the unvulcanized mixture to calender or extrude smoothly with minimum swelling and to maintain shape during air cures, and the tensile strength, tear resistence, and abrasion resistance of vulcanized stocks all are affected. The methods by which these changes are brought about have been considered by many investigators and have been summarized by Parkinson1 and by Shepard, Street, and Park. Since carbon black is the most generally useful reinforcing pigment, it is natural that investigations have been directed particularly to this product. However, while it is recognized that differences exist in the final properties imparted by different pigments, all solid compounding ingredients have something in common. This point can be illustrated by the tear resistance imparted by such a variety of pigments as carbon black, zinc oxide, whiting, and clay. The effect of volume loading on the tear resistance of vulcanized stocks containing these materials, determined by the method of Zimmerman is shown in Figure 1. The effect of solid compounding ingredients can be studied only by considering the compound as a whole, since the properties are determined very largely by the relation between the solid particle and the matrix which surrounds it. Since the introduction of the many types of synthetic rubbers, the complexity of the problem has been greatly increased by the different states of polymerization, which affect the ability of the rubber to conform to the shape of the pigment particle and by the differences in polar nature which affect the type and the degree of adhesion between filler and matrix.


1963 ◽  
Vol 36 (1) ◽  
pp. 176-193
Author(s):  
R. S. Havenhill ◽  
L. E. Carlson

Abstract 1. A new apparatus has been described for measuring the contact potential of powdered reinforcing pigments. 2. With this apparatus, contact potentials on MPC and FT blacks, fine and coarse particle size zinc oxides, whiting, and barytes show correlation with their reinforcing properties in natural rubber and cis-1 ,4-polybutadiene rubber. 3. Contact potentials of Hi-Sil, Suprex clay, coated zinc oxides and coated calcium carbonate pigments showed no correlation with their reinforcing properties in rubber. 4. Contact potentials on the minerals, diamond, quartz, zinc oxide, calcite and barite correlated with the reinforcing properties of their pigment counterparts. 5. Contact potentials of the minerals also correlated with Mohs hardness. 6. Contact potentials on coated zinc oxide pigments correlated with their improved processing properties in rubber. 7. A new apparatus has been described for measuring the contact potentials of cured stocks in which cut surfaces, rather than molded surfaces, are used. Greater accuracy is possible due to the elimination of surface bloom and other surface contamination. 8. Contact potentials measured on the cut surface of cis-1,4-polybutadiene stocks containing various pigments showed good correlation with their reinforcing properties, thus confirming, with this new rubber, the Electrostatic Contact Potential Theory of Reinforcement.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2009 ◽  
Vol 79-82 ◽  
pp. 2183-2186 ◽  
Author(s):  
Chanchai Thongpin ◽  
C. Sripetdee ◽  
N. Papaka ◽  
N. Pongsathornviwa ◽  
Narongrit Sombatsompop

Silica has been widely used as non-black reinforcing filler, however, the filler-filler interaction has been an important issue. Cure characteristic and mechanical properties of the rubber compound and rubber vulcanizate were affected both by filler-rubber interaction and filler-filler interaction. There have been, presently, a number of natural fillers which are also used as fillers for the rubber, i.e. fly ash, sawdust and zeolite. This work therefore will study the effect of second filler added into the 13% Si-69 treated precipitate silica (PSi) filled natural rubber compounds. It was revealed that the scorch and cure time of the rubber compound increased with the content of treated PSi. This was the effect of excess of the silane treated onto PSi which would agglomerate and form the cluster of polysiloxane and would then be able to absorb vulcanizing accelerator resulting in extending the scorch and cure time of the rubber compounds. However, this effect was over ruled with the reinforcing effect as could be seen by the increasing, with the contents of PSi, of maximum torque and mechanical properties of the vulcanizates. The NR compounded with treated PSi content of 20 phr selected to study the effect of excess silane on the cure characteristic of hybrid fillers NR composite. The addition of sawdust led to longer scorch time and cure time but not much change of the maximum torque. As expected, the modulus of the rubber vulcanizate increased with the sawdust content whereas the tensile strength and elongation at break decreased with the sawdust content. The incorporation of zeolite could accelerate the cure reaction therefore both scorch time and cure time decreased. The maximum torque also increased with the content of zeolite. Both modulus and tensile strength increased with the content of the zeolite whereas elongation at break tended to be unchanged. In the case of using fly ash as the second filler, the cure time tended to be unchanged. However, the maximum torque tended to be increased with the content of fly ash. It was found that the modulus, tensile strength increased but elongation at break decreased. Interestingly, the excess of Si-69 used effect pronouncedly for the addition of zeolite and fly ash cases as the excess silane could promote the interaction between fillers surface and rubber molecule accept for sawdust


1931 ◽  
Vol 4 (2) ◽  
pp. 248-255
Author(s):  
D. J. Beaver ◽  
J. W. MacKay

Abstract Mixtures of varying ratios of either channel black or a soft carbon black with whiting, lithopone, or clay show additive physical properties. Mixtures of soft carbon with zinc oxide also show additive properties, while mixtures of channel black and zinc oxide show poorer resistance to abrasion, higher modulus, and higher tensile strength than would be shown by purely additive mixtures. The explanation of these results appears to be found in the chemical reaction between the basic zinc oxide and the acidic compounds in the rubber or on the black. These results have been applied to the formulation of a solid-tire stock which will give a better resistance to abrasion and blow-out when using a soft black than when using a channel black.


2016 ◽  
Vol 11 (1) ◽  
pp. 43-50
Author(s):  
Rahmaniar Rahmaniar

Padding used to strengthen and enlarge rubber volume, can improve the quality of rubbery goods’physical characteristics and vulcanization. The objectives of the research were to obtain the formulation ofrubber compound met SNI standardvaried with particle size of flour clamshell and ratio composition of padding(clamshell flour: carbon black). The experimental design of the research was Completely RandomizedFactorial Design. The first factor was concentration of clamshell flour in particle size (A): A1:30 phr, A2:40 phr, A3: 50 phr. The second was ratio composition of padding (clamshell flour: carbon black N330) (B):B1 = 15:55 phr, B2=25:45 phr and B3=35:35 phr. Testing on quality of rubber compound’s characteristicsincludevisual test, modulus, and ageing resistance including hardness, tensile strength, elongation at break.The result showed that visual test for physical compound characteristics value is no defect for all formula, 55– 104% for modulus, while compound physical test after ageing process shows 56 – 64 shore A for hardness,106 – 129 kg/cm2 for tensile strength, 336 – 579% for elongation at break. Test result for all parametersmeets SNI 06-7031-2004 as the standard for motorcycle grip handle.Keywords: rubber compound, Flour Clamshell, carbon black.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Mirosława Prochoń ◽  
Anita Przepiórkowska ◽  
Yves-Herve Tshela Ntumba

The current investigation treats about the influence of waste fodder potato proteins (WFPP) recovered from the starch industry on the mechanical-properties of carboxylated acrylonitrile-butadiene rubber (XNBR). WFPP were characterized and used as a filler of the above mentioned XNBR rubber without or after blending with zinc oxide. The obtained rubber compounds were cured, and mechanical properties such as tensile strength, hardness, and cross-linking density were investigated. It was found that the introduction of WFPP previously blended with zinc oxide into rubber compound increases the cross-linking density of the obtained composites, compared with the vulcanizate without protein, which in turn increases the mechanical properties of the obtained vulcanizates. That occurs thanks to the formation of ion nodes, as testified by equilibrium swelling. The introduction of WFPP into the elastomer matrix also increases the susceptibility of the elastomer to biodecomposition.


Sign in / Sign up

Export Citation Format

Share Document