scholarly journals KETAHANAN USANG BARANG JADI KARET PEGANGAN SETANG SEPEDA MOTOR DARI TEPUNG KULIT KERANG

2016 ◽  
Vol 11 (1) ◽  
pp. 43-50
Author(s):  
Rahmaniar Rahmaniar

Padding used to strengthen and enlarge rubber volume, can improve the quality of rubbery goods’physical characteristics and vulcanization. The objectives of the research were to obtain the formulation ofrubber compound met SNI standardvaried with particle size of flour clamshell and ratio composition of padding(clamshell flour: carbon black). The experimental design of the research was Completely RandomizedFactorial Design. The first factor was concentration of clamshell flour in particle size (A): A1:30 phr, A2:40 phr, A3: 50 phr. The second was ratio composition of padding (clamshell flour: carbon black N330) (B):B1 = 15:55 phr, B2=25:45 phr and B3=35:35 phr. Testing on quality of rubber compound’s characteristicsincludevisual test, modulus, and ageing resistance including hardness, tensile strength, elongation at break.The result showed that visual test for physical compound characteristics value is no defect for all formula, 55– 104% for modulus, while compound physical test after ageing process shows 56 – 64 shore A for hardness,106 – 129 kg/cm2 for tensile strength, 336 – 579% for elongation at break. Test result for all parametersmeets SNI 06-7031-2004 as the standard for motorcycle grip handle.Keywords: rubber compound, Flour Clamshell, carbon black.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
A. Petchsuk ◽  
D. Srinun ◽  
S. Buchatip ◽  
W. Supmak ◽  
D. Sirikittikul

Single-purpose greenhouse films such as UV-blocking, NIR-blocking, or ultrathermic films are commonly developed in various climate regions. However, multifunctional films of combined functions are rarely explored, especially in the tropical regions. In this research, a multifunctional film having high UV filtration, high NIR reflection, and good light diffusion was developed for a greenhouse cover application in tropical regions. Effects of type, quantity, and particle size of additives on optical properties (280–2500 nm) and mechanical properties of 3-layer laminated films comprising 90% LLDPE/10% EVA polymer matrix and additives were studied. Results show that properties of those films are adjustable by varying types, particle size, and content of additives. The UV transmission of the film was ranged from 13.7 to 32.7 %T, NIR reflection from 12.1 to 19.8 %R, and %haze diffusion from 39.5 to 72.3 where photosynthetically active radiation (PAR) transmission was in the range of 62.6–78.9 %T. Those films exhibit tensile strength of 18–24 MPa, modulus of elasticity of 200–280 MPa, and elongation at break of 610–810%. A field test of the newly developed films as a cover for a greenhouse of 6 m wide ×24 m long ×4.3 m high with double roof design showed a better quality of plant growth in terms of weight, height, and bush width compared to a 7% UV absorber commercial film.


1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


Author(s):  
F Hakami ◽  
A Pramanik ◽  
AK Basak ◽  
N Ridgway ◽  
MN Islam

Effect of abrasive particle size on tribological behaviour of different elastomers was investigated experimentally in this study. The size of abrasive particle size was varied from coarse (425 µm) to fine (82 µm). Wear rate and coefficient of friction were calculated and analyzed accordingly followed by the examination of worn surfaces by a scanning electron microscope to unravel the wear mechanism. Experimental results showed that abrasive size had a significant effect on wear and friction behaviour of the elastomers. As the abrasive particle size increased, wear rate and coefficient of friction also increased at different rates and exhibited different wear mechanisms that changed from friction to fatigue and roll formation. Mechanical properties of elastomers such as hardness, tensile strength, tear strength, and elongation at break also contributed to wear and friction. The effect of elongation at break and tensile strength on wear rate is more pronounced at lower abrasive particle size, whereas hardness and tear strength play a pivotal role at the higher abrasive size.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Toan Duy Nguyen ◽  
Chinh Thuy Nguyen ◽  
Van Thanh Thi Tran ◽  
Giang Vu Nguyen ◽  
Hai Viet Le ◽  
...  

Plasticized polyvinyl chloride (PVC) was fabricated using epoxidized soybean oil (ESBO) as a secondary bioplasticizer with dioctyl phthalate (DOP). The PVC/MFA/CB composites were prepared by melt mixing of the plasticized PVC with modified fly ash (MFA), carbon black N330 (CB), and polychloroprene (CR) in a Haake Rheomix mixer using a rotation speed of 50 rpm at 175°C for 6 min and then compressed by Toyoseiki pressure machine under 15 MPa. The effect of ESBO content on morphology, melt viscosity, tensile properties, and flame retardancy of PVC/MFA/CB composites was investigated. The obtained results showed that the incorporation of ESBO has significantly enhanced the processing ability, Young’s modulus, tensile strength, and elongation at break of the PVC/MFA/CB composites. The torque of PVC/MFA/CB composites was increased to approximately 12% when 50 wt% of DOP was replaced by ESBO. When ESBO was 20 wt% in comparison with DOP weight, the elongation at break, tensile strength, and Young’s modulus of the composites were increased to 48%, 24%, and 4.5%, respectively. Correspondingly, thermogravimetric analysis results confirmed that ESBO had improved the thermostability of the PVC composites. The ESBO have potential as a secondary bioplasticizer replacement material for DOP owing to their better thermomechanical stability.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2009 ◽  
Vol 79-82 ◽  
pp. 2183-2186 ◽  
Author(s):  
Chanchai Thongpin ◽  
C. Sripetdee ◽  
N. Papaka ◽  
N. Pongsathornviwa ◽  
Narongrit Sombatsompop

Silica has been widely used as non-black reinforcing filler, however, the filler-filler interaction has been an important issue. Cure characteristic and mechanical properties of the rubber compound and rubber vulcanizate were affected both by filler-rubber interaction and filler-filler interaction. There have been, presently, a number of natural fillers which are also used as fillers for the rubber, i.e. fly ash, sawdust and zeolite. This work therefore will study the effect of second filler added into the 13% Si-69 treated precipitate silica (PSi) filled natural rubber compounds. It was revealed that the scorch and cure time of the rubber compound increased with the content of treated PSi. This was the effect of excess of the silane treated onto PSi which would agglomerate and form the cluster of polysiloxane and would then be able to absorb vulcanizing accelerator resulting in extending the scorch and cure time of the rubber compounds. However, this effect was over ruled with the reinforcing effect as could be seen by the increasing, with the contents of PSi, of maximum torque and mechanical properties of the vulcanizates. The NR compounded with treated PSi content of 20 phr selected to study the effect of excess silane on the cure characteristic of hybrid fillers NR composite. The addition of sawdust led to longer scorch time and cure time but not much change of the maximum torque. As expected, the modulus of the rubber vulcanizate increased with the sawdust content whereas the tensile strength and elongation at break decreased with the sawdust content. The incorporation of zeolite could accelerate the cure reaction therefore both scorch time and cure time decreased. The maximum torque also increased with the content of zeolite. Both modulus and tensile strength increased with the content of the zeolite whereas elongation at break tended to be unchanged. In the case of using fly ash as the second filler, the cure time tended to be unchanged. However, the maximum torque tended to be increased with the content of fly ash. It was found that the modulus, tensile strength increased but elongation at break decreased. Interestingly, the excess of Si-69 used effect pronouncedly for the addition of zeolite and fly ash cases as the excess silane could promote the interaction between fillers surface and rubber molecule accept for sawdust


2012 ◽  
Vol 501 ◽  
pp. 274-278
Author(s):  
Guang Yi Lin ◽  
Ben Fa Gao ◽  
Chuan Sheng Wang

In order to improve the dispersion degree of carbon black and other additives, reduce consumption of energy and the temperature of discharging rubber compound, our research has been focused on preparation of rubber compound with different rubber particle size at filling coefficient of 0.6 and 0.7 in the mixer. The power consumption, the temperature of discharging rubber compound and the dispersion of carbon black were characterized in this study. The mechanical properties of the rubber compound have also been tested. The results indicate that reducing the particle size of rubber can reduce the consumption of energy and the temperature of discharging rubber compound and improve the mechanical properties, which is very important in rubber industry


2013 ◽  
Vol 812 ◽  
pp. 236-240
Author(s):  
Mohd Zaki Nurul Ayunie ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

The effects of epoxidized palm oil (EPO) content in carbon black filled styrene butadiene rubber (SBR) on tensile strength, elongation at break and crosslink density were investigated. Five different loadings of EPO in parts per hundred rubbers (phr) were used to test the tensile strength of the carbon black filled SBR which showed a decreasing trend as the content of EPO in the vulcanizates increased. In contrast, elongation at break showed the opposite trend where the elongation at break increased as the content of the EPO increased. The SBR vulcanizates with the highest content of EPO gave the highest value of elongation at break which is 2393.56%. In the case of swelling index, it was found to increase as the amount of EPO increased.


2009 ◽  
Vol 87-88 ◽  
pp. 200-205 ◽  
Author(s):  
Yan He ◽  
Zhong Yin ◽  
Lian Xiang Ma ◽  
Jun Ping Song

Through measuring the thermal conductivities and tensile strength of nature rubbers filled with carbon black and comparing with each other, it is shown that the difference of carbon black particle size and the structure affects on the thermal conductivity and tensile strength of nature rubber. Thermal conductivities of carbon black-filled nature rubber are enhanced with the increase of volume fraction of filler; tensile strength of composite increases first and then decreases with the increase of carbon black volume fraction.


2011 ◽  
Vol 308-310 ◽  
pp. 820-823
Author(s):  
Jian Jiao ◽  
Pan Bo Liu ◽  
Liang Zou ◽  
Guang Li Wu

The nanometer carbon black (CB) N220 of different content was employed to prepare carbon black N220/epoxy resin (CB N220/EP) composites by filling-mixing method. The structure of CB N220 and its dispersion in epoxy resin were analyzed by TEM and tensile fracture surface of the composites was analyzed by SEM. Experimental results showed that CB N220 was dispersed in epoxy resin homogenously in the form of CB particles and it formed a good interface with epoxy resin in the presence of coupling agent (KH-550). Using of CB N220 enhanced the mechanical and thermal properties of the composites, for tensile strength, elongation at break, impact strength and flexural strength of the composites filled with 2 wt% CB N220 reached a maximum values( 82Mpa、3%、20 KJ•m-2、107Mpa), a rise of 32.3%、39.6%、88.7%、10.3%, respectively, compared to pristine epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document