STRAIN-INDUCED CRYSTALLIZATION AND MECHANICAL PROPERTIES OF NBR COMPOSITES WITH CARBON NANOTUBE AND CARBON BLACK

2012 ◽  
Vol 85 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Sang-Ryeoul Ryu ◽  
Jong-Whan Sung ◽  
Dong-Joo Lee

Abstract The mechanical properties and strain-induced crystallization (SIC) of elastomeric composites were investigated as functions of the extension ratio (λ), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content. The tensile strength and modulus gradually increase with increasing CNT content when compared with the matrix and the filled rubbers with same amount of CB. Both properties of rubber with CB and CNT show the magnitude of each CNT and CB component following the Pythagorean Theorem. The ratio of tensile modulus is much higher than that of tensile strength because of the CNT shape/orientation and an imperfect adhesion between CNT and rubber. The tensile strength and modulus of the composite with a CNT content of 9 phr increases up to 31% and 91%, respectively, compared with the matrix. Differential scanning calorimetry (DSC) analysis reveals that the degree of SIC increases with an increase in CNT content. Mechanical properties have a linear relation with the latent heat of crystallization (LHc), depending on the CNT content. As the extension ratio increases, the glass-transition temperature (Tg) of the composite increases for CB- and CNT-reinforced cases. However, the LHc has a maximum of λ = 1.5 for the CNT-reinforced case, which relates to a CNT shape and an imperfect adhesion with rubber. Based on these results, the reinforcing mechanisms of CNT and CB are discussed.

2006 ◽  
Vol 34 (2) ◽  
pp. 119-134 ◽  
Author(s):  
Syeda A. Hussain ◽  
Michelle S. Hoo Fatt

Abstract Tensile tests were conducted to obtain the deformation and failure characteristics of unfilled natural rubber (NR) and natural rubber with 25, 50, and 75 phr of N550 carbon black filler under quasistatic and dynamic loading conditions. The quasistatic tests were performed on an electromechanical INSTRON machine, while the dynamic test data were obtained from tensile impact experiments using a Charpy impact apparatus. In general, the modulus of the stress-extension ratio curves increases with increasing strain rate up to about 407, 367, 346, and 360 s−1 for unfilled, and 25, 50, and 75 phr for filled NR, respectively. Above these strain rates, the unfilled and filled natural rubber stress-extension ratio curves remained unchanged. The modulus increased with increasing strain rate because there was little time for stress relaxation. Above a critical strain rate, no change in modulus was observed because the time of the experiment was short compared to the lowest characteristic relaxation time of the material. Dynamic stress-extension ratio curves did not have the very sharp upturn at break, which is observed from strain-induced crystallization in natural rubber under quasistatic loading. Strain-induced crystallization appeared to be suppressed at high rates of loading. In fact, the highest dynamic tensile strength for the 25- and 50-phr carbon black-filled natural rubbers was smaller than those under quasistatic loading, while the highest dynamic tensile strength of the 75-phr carbon black-filled NR was greater than that in the static test. This indicated that high amounts of carbon black fillers will impede strain-induced crystallization in natural rubber.


2013 ◽  
Vol 681 ◽  
pp. 252-255
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of material was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler. With the amount of CB increasing, the notched impact strength of composite increased greatly, however the tensile strength declined. When the amount of CB was 30%, the notched impact strength of composite was 9.66 KJ/m2, the tensile strength dropped from 48.3MPa to 33.2MPa. The distribution of CB in the PVC matrix is relatively uniform and no large agglomeration in the PVC matrix.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Atip Boonbumrung ◽  
Pongdhorn Sae-oui ◽  
Chakrit Sirisinha

The properties of nitrile rubber (NBR) reinforced by multiwalled carbon nanotube (MWCNT), conductive carbon black (CCB), carbon black (CB), and precipitated silica (PSi) were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr) leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.


Author(s):  
Hongsheng Tan ◽  
Xiuxue Guo ◽  
Hao Tan ◽  
Qinglu Zhang ◽  
Changheng Liu ◽  
...  

Abstract In this work, a high fluidity polypropylene prepared with the metallocene catalyst (mPP) was used as matrix, carbon nanotube (CNT) and continuous carbon fiber (CCF) were added to prepare composites, and their mechanical properties, melting and crystallization behavior were investigated. In the mechanical properties, the effects of tension force in the preparation process and compatibilizer maleic anhydride grafted polypropylene (MAPP) on the tensile strength of the composites were researched. The results show that the tensile strength of the composites increases first and then decreases with the increase of tractive force. In addition, the melting and crystallization behaviors and dynamic mechanical behaviors of mPP, CNT/mPP and CNT/CCF/mPP composites were characterized and studied by a differential scanning calorimetry (DSC) and dynamic mechanical analyzer (DMA). The results show that the melting point (Tm ), crystallization temperature (Tc ) and storage modulus (E') of CNT/mPP are all increased by adding 1wt% CNT, especially the Tc is increased by 8.8 ºC. It shows that after CNT was added to mPP as inorganic carbon material, it plays a prominent role in heterogeneous nucleation. After CCF was composited with CNT/mPP, the composites with CCF content of 30 and 42wt% were prepared, and their Tm , Tc , crystallinity (Xc ) and E' were all improved, especially E' was greatly improved, such as the initial E' was increased by 5.64 and 11.74 times. Even at the end of the curve, the E' of the composites with CF is still significantly higher than that of mPP and CNT/mPP. It indicates that adding CCF will greatly improved the deformation resistance and load deformation temperature of mPP.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sharmila Pradhan ◽  
Ralf Lach ◽  
Hong Hai Le ◽  
Wolfgang Grellmann ◽  
Hans-Joachim Radusch ◽  
...  

The object of this study has been to investigate the effect of filler dimensionality on morphology and mechanical properties of polymer nanocomposites using various kinds of nanofillers (such as multiwalled carbon nanotubes (1D filler), layered silicate (2D filler), and boehmite (3D filler)) dispersed in the matrix of ethylene-1-octene copolymer (EOC), a polyolefin-based elastomer. The morphological features were studied by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) while mechanical properties were characterized by tensile testing and depth sensitive recording microindentation hardness measurements. It has been demonstrated that the filler dimensionality may have dramatic influence on the mechanical properties of the samples. Based on the results obtained by tensile testing and microhardness measurements, the reinforcing effect of the nanofiller was found to follow the order: 1D filler > 2D filler > 3D filler.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840076
Author(s):  
Chen Zixuan ◽  
Yu Tianyu ◽  
Kyung-Seok Jung ◽  
Chang-Wook Park ◽  
Soo-Jeong Park ◽  
...  

For the fabrication of polymer-based composite materials, the interpretation of an appropriate fabrication process is essential to improve the productivity and manufacturing process. In this study, the wet prepreg forming process was used to fabricate carbon fiber reinforced plastic (CFRP) and different curing cycles were demonstrated for an optimal process. To determine the range of curing temperature, a pretreatment on differential scanning calorimetry (DSC) analysis was performed. After that, tensile and ILSS tests were adopted to investigate the mechanical properties and thermal analysis on a matrix carried out by the DSC equipment. Different volumes of the matrix residue on fractured fiber, which represent the matrix-reinforcement adhesion strength, were observed by a scanning electron microscope (SEM). Also, a void aggregation was found in high curing temperature situation due to excessive exotherm. Both the tensile strength and ILSS held a certain trend with the changing curing cycles. The highest tensile strength (469 MPa) and glass transition temperature (Tg) at 91.58[Formula: see text]C occurred at 80[Formula: see text]C and 12 h curing temperature and time, respectively. The result of ILSS had an almost opposite tendency of the tensile strength. A correlation between Tg and mechanical properties was observed and it can be extensively applied to optimize the manufacturing process.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


Sign in / Sign up

Export Citation Format

Share Document