Processability and Mechanical Properties of CB/PVC Composite

2013 ◽  
Vol 681 ◽  
pp. 252-255
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of material was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler. With the amount of CB increasing, the notched impact strength of composite increased greatly, however the tensile strength declined. When the amount of CB was 30%, the notched impact strength of composite was 9.66 KJ/m2, the tensile strength dropped from 48.3MPa to 33.2MPa. The distribution of CB in the PVC matrix is relatively uniform and no large agglomeration in the PVC matrix.

2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


2019 ◽  
Vol 956 ◽  
pp. 229-236
Author(s):  
Jian Lin Xu ◽  
Zhou Chen ◽  
Lei Niu ◽  
Cheng Hu Kang ◽  
Xiao Qi Liu

In this paper, Sb2O3/PP composite specimens were prepared by ball milling and melt blending. The effects of Sb2O3 particle size and filling amount on the toughening, reinforcing effect and crystallinity of PP composites were analyzed by notch impact test, tensile test, SEM, XRD and DSC characterization. The experimental results show that the filling of Sb2O3 particles can improve the mechanical properties and crystallization properties of Sb2O3/PP composites. With the increase of filling amount of Sb2O3 particles, the tensile strength and impact strength of Sb2O3/PP composite increased first and then decreased. When the content of Sb2O3 is 2 wt.%, the tensile strength and impact strength of Sb2O3/PP composites reach the maximum. When the filling amount is the same, the crystallization and mechanical properties of nanoSb2O3/PP composites are better than those of micron Sb2O3/PP composites.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus

Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.


2012 ◽  
Vol 85 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Sang-Ryeoul Ryu ◽  
Jong-Whan Sung ◽  
Dong-Joo Lee

Abstract The mechanical properties and strain-induced crystallization (SIC) of elastomeric composites were investigated as functions of the extension ratio (λ), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content. The tensile strength and modulus gradually increase with increasing CNT content when compared with the matrix and the filled rubbers with same amount of CB. Both properties of rubber with CB and CNT show the magnitude of each CNT and CB component following the Pythagorean Theorem. The ratio of tensile modulus is much higher than that of tensile strength because of the CNT shape/orientation and an imperfect adhesion between CNT and rubber. The tensile strength and modulus of the composite with a CNT content of 9 phr increases up to 31% and 91%, respectively, compared with the matrix. Differential scanning calorimetry (DSC) analysis reveals that the degree of SIC increases with an increase in CNT content. Mechanical properties have a linear relation with the latent heat of crystallization (LHc), depending on the CNT content. As the extension ratio increases, the glass-transition temperature (Tg) of the composite increases for CB- and CNT-reinforced cases. However, the LHc has a maximum of λ = 1.5 for the CNT-reinforced case, which relates to a CNT shape and an imperfect adhesion with rubber. Based on these results, the reinforcing mechanisms of CNT and CB are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Li Juan

The nanocomposites of polypropylene (PP)/graphene were prepared by melt blending. The effects of the dosage of graphene on the flow and mechanical properties of the nanocomposites were investigated. The morphologies of fracture surfaces were characterized through scanning electron microscopy (SEM). The graphene simultaneous enhanced tensile and impact properties of nanocomposites. A 3.22% increase in tensile strength, 39.8% increase in elongation at break, and 26.7% increase in impact strength are achieved by addition of only 1 wt.% of graphene loading. The morphological behavior indicates the fracture surface of PP/graphene is more rough than that of pure PP.


2014 ◽  
Vol 7 (1) ◽  
pp. 94-108
Author(s):  
Amer Hameed Majeed ◽  
Mohammed S. Hamza ◽  
Hayder Raheem Kareem

The study covers the effect of nanocarbon black particles (N220) on some important mechanical properties of epoxy reinforced with it [carbon black nanoparticles]. The nanocomposites were prepared with (1 to 10 wt. %) of carbon black nanoparticles using ultrasonic wave bath machine dispersion method. The results had shown that the tensile strength , tensile modulus of elasticity, flexural strength and impact strength are improved by (24.02%,7.93%,17.3% and 6% ) respectively at 2wt % .The compressive strength and hardness are improved by (44.4%, 12%) at 4wt%.


2016 ◽  
Vol 36 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Ayyanar Athijayamani ◽  
Balasubramaniam Stalin ◽  
Susaiyappan Sidhardhan ◽  
Azeez Batcha Alavudeen

Abstract The present study describes the preparation of aligned unidirectional bagasse fiber-reinforced vinyl ester (BFRVE) composites and their mechanical properties such as tensile, flexural, shear and impact strength. Composites were prepared by a hand lay-up technique developed in our laboratory with the help of a hot press. Mechanical properties were obtained for different fiber contents by varying the number of layers. The obtained tensile property values were compared with the theoretical results. The results show that the tensile strength increased linearly up to 44 wt% and then dropped. However, the tensile modulus increased linearly from 17 wt% to 60 wt%. In the case of flexural properties, the flexural strength increased up to 53 wt% and started to decrease. However, the flexural modulus also increased linearly up to 60 wt%. The impact strength values were higher than the matrix materials for all the specimens. The short beam shear strength values were also increased up to 53 wt% and then dropped. The modified Bowyer and Bader (MBB) model followed by the Hirsch model shows a very good agreement with experimental results in both tensile strength and modulus.


2011 ◽  
Vol 284-286 ◽  
pp. 1842-1845
Author(s):  
Jue Wang ◽  
Gui Xiang Hou

Polystyrene(PS)/Polystyrene-expanded graphite(EG)(PS/PSEG) composites were prepared by melt blending, using a variety of PSEG. The electrical and mechanical properties of the PS/PSEG were measured. Mechanical property measurements of composites indicated higher impact strength and lower tensile strength with increasing content of PSEG. Exfoliated graphite has seen a significant reduction for composites in electrical resistivity.


2013 ◽  
Vol 834-836 ◽  
pp. 237-240 ◽  
Author(s):  
Kanyakorn Pawarangkool ◽  
Wirunya Keawwattana

In this work, hydroxyapatite (HAp) was produced from crocodile bones by thermal process at 900°C. X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR) and Scanning electron microscope (SEM) were used to characterize the obtained HAp. Polylactic acid (PLA)/HAp composites were prepared by melt blending as follows: 95/5, 90/10 and 85/15 (weight ratio). The effect of the amount of HAp on the mechanical properties including tensile strength, modulus, elongation at break and impact strength of PLA/HAp composites was undertaken. It was found that tensile strength and elongation at break of the composites decreased with an increase of HAp content, while modulus and impact strength showed no significant effect.


2012 ◽  
Vol 488-489 ◽  
pp. 62-66
Author(s):  
Jareenuch Rojsatean ◽  
Supakij Suttireungwong ◽  
Manus Seadan

The blend of poly(styrene-co-acrylonitrile) (SAN) and natural rubber (NR) is immiscible and incompatible which lead to poor mechanical properties. Many methods can be carried out to improve the compatibility. In this work, the potential of various reactive compatibilizers in SAN and NR blend was explored. The morphological and mechanical properties were compared. The melt blending of SAN and NR were prepared in an internal mixer with various types of reactive agent such as styrene-co-maleic anhydride (SMA), maleic anhydride (MA), peroxide and mixed reactive agents. The morphological textures of the blends were investigated by scanning electron microscope. Mechanical properties including tensile strength, impact strength and elongation at break were measured. The results of morphological observations revealed that SAN/NR blend with reactive agent, the mixture of SMA and MA show the smallest and the most uniform dispersed NR particles, where the size of NR particle is about 1 µm. The mechanical properties of the blends revealed impact strength and elongation at break were increased with addition of reactive agents. SAN/NR blend with the mixture of SMA and MA showed the highest elongation at break but it had lower impact strength than the blend with SMA.


Sign in / Sign up

Export Citation Format

Share Document